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Abstract. We characterize the single-crossing random utility model (SCRUM) (Apesteguia,

Ballester, and Lu (2017)) restricted to the (experimentally and empirically) important do-

main of binary choice menus. As corollaries we characterize some important subclasses of

SCRUM (such as single-peaked and single-dipped random utility models) on this domain.

In doing so, we address instances of the (still unsolved) binary random utility problem,

which asks under what conditions there is a random utility model consistent with data from

binary menus.
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1. Introduction

The random utility model (RUM) posits a probability distribution on a set of preferences.

The probability of choosing an alternative is the sum of probabilities of preferences having

the alternative as their top choice. The single-crossing random utility model (SCRUM),

introduced by Apesteguia, Ballester, and Lu (2017), is a special case of RUM where the

collection of preferences in its support satisfies the single-crossing condition. Roughly speak-

ing, a collection of preferences is single-crossing w.r.t. an order � if the preferences can be

ordered such that if x � y then lower ranked preferences prefer y to x and higher ranked

preferences prefer x to y. This condition arises naturally in a number of applications and is

an effective way to control heterogeneity in underlying preferences. The tractability offered

by the single-crossing condition implies a number of desirable properties of SCRUM such as

unique representation/identification and a clean characterization.
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The main contribution of this paper is a characterization of the single-crossing random

utility model restricted to the collection of binary menus. Our main property is a type of

stochastic transitivity. Our motivation is threefold.

First, binary menus are ubiquitous in experimental and empirical work on discrete choice

(see e.g. Tversky (1969), Hey and Orme (1994), Regenwetter, Dana, and Davis-Stober

(2011), Halevy, Persitz, and Zrill (2018), Alós-Ferrer, Fehr, and Netzer (2021), Apesteguia

and Ballester (2021a) and Apesteguia and Ballester (2021b)). There is an abundance of ex-

perimental designs in economics and psychology that make use of so called ”Two Alternative

Forced Choice” response tasks.1 Further, binary data sets are readily available in practice

due to the binary nature of many choice decisions. Whether to join or not the labour force,

to invest in a safe or risky asset, to buy a health insurance or not, or whether to go to work

by public or private transportation are just a few examples of binary choices.2

Second, although Apesteguia et al. (2017) show that binary menus are sufficient to iden-

tify the underlying parameters of SCRUM, the characterization provided by them does not

directly apply to the domain of binary menus.3 Indeed, both of their main properties, mono-

tonicity and centrality vacuously hold on this domain. This paper complements their analysis

by showing that there are also simple conditions that characterize SCRUM on binary menus.

Third, the corresponding problem for the random utility model is, despite quite much

effort, still largely unsolved.4 The literature has established various necessary conditions,

but to date no set of necessary and sufficient conditions is known (see e.g. Gilboa (1990),

Fishburn (1990) and Cohen and Falmagne (1990)). We address an instance of this problem,

where the collection of preferences in the support of a random utility model satisfies the

single-crossing condition.

1”Forced” is to emphasise that participants are forced to choose one of two options in each binary menu they
are presented with. We refer to Tversky (1969), Regenwetter et al. (2011) and references therein for further
details.
2See Bhattacharya (2021), Matzkin (1992) for a further discussion.
3Domain issues in the random utility framework are also explored in Apesteguia and Ballester (2021a).
4A similar, but distinct, problem is studied in Manzini and Mariotti (2018) (see also Manzini et al. (2019)).
They ask: when is there a random utility with support consisting of two distinct utility functions consistent
with data from all menus. The binary random utility problem asks: when is there a random utility (with no
restriction on the support of the RUM) that is consistent with data from binary menus.
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2. Binary single-crossing random utility models

2.1. Notation and preliminary definitions. We denote by X a finite set of alternatives.

Let � be a strict linear order on X. A binary stochastic choice function (binary SCF) is

a function ρ : X × X → [0, 1] such that ρ(x, y) + ρ(y, x) = 1 for all alternatives x, y ∈ X.

Let P denote the set of strict linear orders on X. For all x, y ∈ X denote by P(x, y) =

{P ∈ P : xPy}. A binary stochastic choice function ρ is a random utility model (RUM)

if there is a measure µ on P such that ρ(x, y) = µ(P(x, y)) for all x, y ∈ X. The support

of µ is the set of P ∈ P with µ(P ) > 0. A binary stochastic choice function ρ is a single-

crossing random utility model (SCRUM) if ρ is a RUM with measure µ on P and there is

an ordering {P1, ..., PT} of the support of µ such that if x � y and s > t then xPty implies

xPsy. Intuitively, Ps is more aligned with � than Pt. That is, the collection of preferences

in the support of µ satisfies the single-crossing condition w.r.t. �.

2.2. Axioms. Our characterization of SCRUM on the collection of binary menus makes use

of a simple stochastic transitivity property.

Aligned stochastic transitivity (AST). For all x, y, z ∈ X: If x � y � z or z � y � x

then

ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

The intuition behind AST is quite simple.5 Suppose that x � y � z. Then ρ(x, y) is the

measure of the set of preferences that are aligned with x � y. Similarly, ρ(y, z) (ρ(x, z))

is the measure of the set of preferences that are aligned with y � z (x � z). AST is a

simple consequence of the ordered structure of the support of a SCRUM. To explain, let

S = {P1, ..., Pn} denote the support of a (binary) SCRUM. The structure of S then implies

that either S(x, y) ⊆ S(x, z) or S(y, z) ⊆ S(x, z) and the conclusion of AST is immediate.6

To see that S(x, y) ⊆ S(x, z) or S(y, z) ⊆ S(x, z), we reason by contradiction. If not, then

there is a preference P such that xPy and zPx, so zPxPy. Further there is a preference P ′

such that yP ′z and zP ′x, so yP ′zP ′x. But, this is a contradiction to S being a single-crossing

collection of preferences.7

5To provide some further intuition, appendix A discusses other (equivalent) formulations of this property.
6Where S(x, y) = {P ∈ S : xPy} for all x, y ∈ X.
7If S is single-crossing w.r.t. � and x � y � z, then S cannot contain preferences P, P ′ such that the
”middle” alternative y is best (among x, y, z) according to one of these preferences and worst according to
the other.
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The following, equivalent, formulation of AST highlights an important aspect of AST that

is perhaps not immediate from its original formulation above (we show that AST’ and AST

are equivalent properties in appendix A).

Aligned Stochastic Transitivity’ (AST’). For all x, y, z ∈ X: If x � y � z then

max{ρ(x, y), ρ(y, z)} ≥ ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

In particular, it shows that AST requires ρ(x, z) to be smaller than the maximum of ρ(x, y)

and ρ(y, z) whenever x � y � z. As we will discuss later in section 2.3 this implies that

AST is logically distinct from many other types of stochastic transitivity considered in the

literature.

There is a related (but stronger) notion of stochastic transitivity requiring the stronger

conclusion that ρ(x, z) is larger than the maximum of ρ(x, y) and ρ(y, z). As shown in

appendix B, this stronger notion characterizes a very restricted class of SCRUMs, where each

preference in the support of the RUM is either completely aligned or completely unaligned

with the order �.

2.3. Discussion of related stochastic transitivity properties. AST is reminiscent of

various stochastic transitivity properties considered in the literature (see He and Natenzon

(2020) and Caliari (2021) for an overview of previous literature). The statement of AST

resembles the classic moderate stochastic transitivity property.

Moderate stochastic transitivity (MST). For all x, y, z ∈ X: If ρ(x, y) ≥ 1
2

and ρ(y, z) ≥
1
2

then

ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

Note that MST requires the conclusion of AST to hold whenever there is a weak (majority)

preference in favor of x compared to y and a weak (majority) preference in favor of y compared

to z. Despite their resemblance, AST is neither implied by nor implies MST. Example C.1

in appendix C gives an example of a binary SCRUM that fails to satisfy MST. Conversely,

example 2.2 below (and the discussion in appendix C.4) shows that a large class of Luce/logit

SCFs fails to satisfy AST, but these rules satisfy MST.

The dissimilarity between MST and AST is mainly due to the weak premises of MST.

AST is indeed related to the following weaker (stronger premises) version of MST that only
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requires the conclusion of MST to hold in cases where there is a strict majority in favor of

x when compared to y and a strict majority in favor of y when compared to z.8

Weak moderate stochastic transitivity (WMST). For all x, y, z ∈ X: If ρ(x, y) > 1
2

and ρ(y, z) > 1
2

then

ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

Our AST property is easily read from this weaker property. Note again that the conclusions

of both properties are the same. WMST says that whenever x is ”better” than y and y

is ”better” than z, the conclusion must hold. AST suggests that what matters is not the

quality/majority order but rather the underlying/exogenous order � of alternatives. It is

therefore not very surprising that AST implies WMST.

Proposition 2.1. If a binary stochastic choice function ρ satisfies AST then it satisfies

WMST.

The proof of proposition 2.1 is straightforward and delegated to appendix C. As the next

example shows, WMST is strictly weaker than our stochastic transitivity property and hence

not equivalent to it. It shows that there are Luce/logit rules that fail to satisfy AST. Since

every Luce rule satisfies WMST it follows that WMST is strictly weaker than AST.9

Example 2.2. Let X = {x, y, z} be a set with three alternatives and an order � such that

x � y � z. Consider a utility function u on X defined by u(x) = 3, u(y) = 2, u(z) = 1. Let

ρ be a (binary) Luce rule with utility function u, i.e.

ρ(a, b) =
u(a)

u(a) + u(b)

for all a, b ∈ X. The probability of choosing an alternative in this model is thus proportional

to its utility value. We show that ρ violates AST. Note that:

ρ(x, z) =
u(x)

u(x) + u(z)
=

3

4
>

2

3
=

u(y)

u(y) + u(z)
= ρ(y, z),

ρ(x, z) =
u(x)

u(x) + u(z)
=

3

4
>

3

5
=

u(x)

u(x) + u(y)
= ρ(x, y).

8This property is also discussed in Fishburn (1973) under the name partial stochastic transitivity.
9This example also shows that MST does not imply AST, since every Luce rule satisfies the stronger MST
property.
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Thus, ρ(x, z) > max{ρ(x, y), ρ(y, z)}. This is a violation of AST. To see this, note that

x � y � z which by formulation AST’ of AST implies that ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)}, a

contradiction. /

Example 2.2 shows that there are binary Luce SCFs that fail to satisfy AST (for some

exogenous order �). Although, the binary Luce SCF ρ in example 2.2 violates AST w.r.t.

the exogenous order x � y � z, there are other orders �′ s.t. ρ satisfies AST w.r.t. �′.

Indeed, one can show that ρ satisfies AST w.r.t. the order x �′ z �′ y.10 However, if the

grand set of alternatives X contains at least five alternatives, then one can show that the

class of binary Luce SCFs (with strict utility) fails to satisfy AST for any order � on X (see

appendix C.4 for details). So the behavior predicted by the binary Luce model and AST is,

in this sense, very different.

The basic reason why the binary Luce SCF in example 2.2 fails to satisfy AST is that

it satisfies strong stochastic transitivity. This property requires that if ρ(x, y) > 1
2

and

ρ(y, z) > 1
2

then ρ(x, z) > max{ρ(x, y), ρ(y, z)} and is a characterizing property of a larger

class of Fechnerian/simple scalability SCFs. As noted above, AST implies that ρ(x, z) is

smaller than max{ρ(x, y), ρ(y, z)}. This inconsistency, modulo some technicalities, implies

that the class of SCFs satisfying AST is disjoint from those satisfying strong stochastic

transitivity. A corollary is hence that AST is inconsistent with any type of behavior generated

by the (strict) Fechnerian model. We elaborate further on this in appendix C.4.

2.4. Characterization. We are now ready to state our main characterization result. The

proof is constructive and follows similar lines of reasoning as in Apesteguia et al. (2017).

Theorem 2.3. A binary stochastic choice function ρ satisfies AST if and only if it is a

SCRUM.

Proof. For each θ ∈ (0, 1] define a binary relation Pθ by xPθy if and only if [x � y and ρ(y, x) < θ]

or [y � x and ρ(x, y) ≥ θ]. We claim that each Pθ is a strict linear order. The proof of asym-

metry and completeness of Pθ is immediate. We claim that Pθ is transitive. Assume that

xPθy and yPθz. There are six mutually exhaustive cases:

(1) x � y � z. Then ρ(y, x) < θ and ρ(z, y) < θ. Hence ρ(x, y) ≥ θ and ρ(y, z) ≥ θ, so

by AST it then follows that ρ(x, z) ≥ min{ρ(x, y), ρ(y, x)} ≥ θ. Hence ρ(z, x) < θ so

xPθz.

10To see this, note that ρ(x, z) = 3
4 > ρ(x, y) = 3

5 > ρ(z, y) = 1
3 , so max{ρ(x, z), ρ(z, y)} ≥ ρ(x, y) ≥

min{ρ(x, z), ρ(z, y)} and hence AST (AST’) holds.
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(2) x � z � y. Then ρ(y, x) < θ ≤ ρ(y, z). It follows that ρ(z, x) < θ, since other-

wise ρ(z, x) ≥ θ and ρ(y, z) ≥ θ together with AST implies that ρ(y, x) ≥ θ. A

contradiction. Thus xPθz.

(3) y � x � z. Then ρ(x, y) ≥ θ > ρ(z, y). By AST it follows that ρ(z, y) ≥
min{ρ(x, y), ρ(z, x)} hence θ > ρ(z, y) ≥ ρ(z, x) implying that xPθz.

(4) y � z � x. Then ρ(z, y) < θ ≤ ρ(x, y). Thus ρ(y, x) ≤ 1 − θ < ρ(y, z). By AST

it follows that ρ(y, x) ≥ min{ρ(y, z), ρ(z, x)} = ρ(z, x). Hence ρ(z, x) ≤ 1 − θ, or

equivalently ρ(x, z) ≥ θ. Thus xPθz.

(5) z � y � x. Then ρ(x, y) ≥ θ and ρ(y, z) ≥ θ. Then AST immediately gives

ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)} ≥ θ. Thus xPθz.

(6) z � x � y. Then ρ(y, x) < θ ≤ ρ(y, z). Hence ρ(x, y) > 1 − θ ≥ ρ(z, y). It follows

by AST that 1− θ ≥ ρ(z, y) ≥ min{ρ(x, y), ρ(z, x))} = ρ(z, x). Thus ρ(x, z) ≥ θ. So

xPθz.

Define a RUM µ by assigning to any P ∈ P the value µ(P ) = `{θ : Pθ = P}, where `

is the Lebesgue measure. We show that ρ(x, y) = µ(P(x, y)) for all x, y ∈ X (the case

y � x is symmetric). Let x, y ∈ X and assume w.l.o.g. that x � y. By construction

of Pθ it then follows that for all θ: xPθy if and only if ρ(y, x) < θ. Hence ρ(x, y) =

1 − ρ(y, x) = `{θ : ρ(y, x) < θ} = `{θ : xPθy} = µ(P(x, y)). Similarly, it follows that

ρ(y, x) = `{θ : ρ(y, x) ≥ θ} = `{θ : yPθx} = µ(P(y, x)). It remains to prove that the RUM

µ constructed above is single-crossing, but this follows directly from the proof of Claim 6

(p.671) in Apesteguia et al. (2017). This completes the proof of sufficiency.

We next show that AST is necessary for a binary SCRUM representation. Let ρ be a binary

SCRUM and let x, y, z ∈ X. Assume w.l.o.g. that ρ(x, y) > 0 and ρ(y, z) > 0. Let

{P1, ..., Pn} be an ordering of the support of µ that satisfies the single-crossing condition

w.r.t. �.

Case 1 (x � y � z): Since ρ(x, y) > 0, ρ(y, z) > 0 there are indices k(x) and k(y) s.t.

ρ(x, y) =
∑n

i=k(x) µ(Pi) and ρ(y, z) =
∑n

i=k(y) µ(Pi) and such that xPiy if and only if i ≥ k(x)

and yPiz if and only if i ≥ k(y). It follows by transitivity of the Pi that xPiz for all

i ≥ max{k(x), k(y)}. The conclusion of AST then follows since

ρ(x, z) ≥
n∑

i=max{k(x),k(y)}

µ(Pi) = min{
n∑

i=k(x)

µ(Pi),
n∑

i=k(y)

µ(Pi)} =
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= min{ρ(x, y), ρ(y, z)}.

Case 2 (z � y � x): Since ρ(x, y) > 0, ρ(y, z) > 0 there are indices k(x) and k(y) s.t.

ρ(x, y) =
∑k(x)

i=1 µ(Pi) and ρ(y, z) =
∑k(y)

i=1 µ(Pi) and such that xPiy if and only if i ≤ k(x)

and yPiz if and only if i ≤ k(y). By transitivity of the Pi it follows that xPiz for all

i ≤ min{k(x), k(y)}. Hence,

ρ(x, z) ≥
min{k(x),k(y)}∑

i=1

µ(Pi) = min{
k(x)∑
i=1

µ(Pi),

k(y)∑
i=1

µ(Pi)} =

= min{ρ(x, y), ρ(y, z)}.
This completes the proof of the claim. �

3. Binary single-peaked and single-dipped random utility models

We next study and provide characterizations of two interesting subclasses of SCRUM. Let

max(X,P ) denote the best alternative in X according to preference P ∈ P .11 A preference

relation P is single-peaked if y � x � max(X,P ) or max(X,P ) � x � y implies xPy. A

random utility model µ is a single-peaked random utility model (SPRUM) if every preference

P in the support of µ is single-peaked. The following property is an observable implication

of SPRUM on binary menus.

Monotone increasing demand (MID). For all x, y, z ∈ X: If x � y � z or z � y � x

then ρ(x, z) ≥ ρ(x, y).

Formally, MID is a strengthening of AST. Intuitively, MID says that if the distance from

x to another alternative increases then the demand for x relative to the other alternative

must (weakly) increase as well. MID is related to concavity of the preferences in the support

of the RUM. If X is a subset of the real line, then MID is satisfied if each preference in

the support of the RUM is represented by a quasiconcave utility function. Indeed, MID is

reminiscent of a condition called convex substitutability in Lu and Saito (2021).12 Convex

substitutability requires that ρ(x, αx + (1 − α)y) ≤ ρ(x, y) for all x, y ∈ X and α ∈ (0, 1)

(where X is convex) and is a necessary condition for pure characteristic models (which are

random utility models with continuous utilities) with quasiconcave utility functions. Loosely

11I.e. max(X,P )Py for all y ∈ X \ {max(X,P )}.
12I thank Jay Lu for suggesting the MID property and its interpretation.
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speaking, convex substitutability requires the demand for x to increase when the ”convex

distance” to another alternative increases.13 To further illustrate this we next consider an

example adapted from Lu and Saito (2021).

Example 3.1. Let X = {x, y, z} where x > y > z are real numbers situated in the interval

[0, 1] and y > x+z
2

(for concreteness think of the case x = 1, y = 3
4

and z = 0). Assume that

� agrees with the order >, i.e. x � y � z. Define two utility functions u1, u2 by:

u1(α) = −(α− y)2,

u2(α) = −(α− 2)2.

Assume that ρ puts equal probability on u1 and u2. To verify that the MID property holds we

calculate the choice probabilities ρ(x, y) and ρ(x, z). Note that u2(x) > u2(y) > u2(z) since

u2(α) is increasing for all α ≤ 2. Further, we have u1(z) = −(z − y)2 < −(x− y)2 = u1(x),

where −(x− y)2 > −(z − y)2 follows since y > x+z
2

. It is clear that u1(x) < 0 = u1(y), and

thus ρ(x, y) = 1
2
< 1 = ρ(x, z). /

The fundamental reason why the RUM in example 3.1 satisfies MID is (quasi)concavity of

u1 and u2. Indeed, example 3.1 can be generalized to show that MID holds if each preference

in the support of a RUM satisfies an abstract quasiconcavity condition. Recall that a utility

function u is quasiconcave if u(y) ≥ min{u(x), u(z)}, where y = λx + (1 − λ)z. In analogy

with this definition call a preference relation P on X quasiconcave if for all x, y, z ∈ X with

x � y � z or z � y � x we have that yPx or yPz.14 Quasiconcavity of a preference implies

that if x is preferred to a ”close” alternative y then x must also be preferred to a more

”distant” alternative z. I.e., if x � y � z and xPy then xPz. If not, then we have zPxPy,

a contradiction to quasiconcavity. By this it is immediate that any RUM with quasiconcave

preferences satisfies MID. I.e. the demand for x relative to a more distant alternative z

must be larger than the demand for x relative to a close alternative y. This is because

quasiconcavity implies that every agent that prefers x to y must also prefer x to z.15

In appendix C.3 we show that quasiconcavity and single-peakedness are equivalent proper-

ties for a preference relation P . Given the preceding discussion and the resemblance between

13When X is a convex subset of the real line with its usual order, then our notion of distance agrees with
that of Lu and Saito (2021) and the MID property agrees with convex substitutability. A proof of this result
is available from the author upon request.
14Equivalently, a preference relation P is quasiconcave if it can be represented by a utility function u : X → R
such that for all x, y, z ∈ X: If x � y � z or z � y � x then u(y) ≥ min{u(x), u(z)}.
15More formally, note that MID holds since ρ(x, y) =

∑
P∈P:xPy µ(P ) ≤

∑
P∈P:xPz µ(P ) = ρ(x, z).
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quasiconcavity and single-peakedness it is perhaps not surprising that MID is a necessary

property in a characterization of SPRUM. The following proposition shows that MID is also

sufficient.

Proposition 3.2. A binary stochastic choice function ρ satisfies MID if and only if it is a

single-peaked random utility model.

Proof. We first show necessity. Let x, y, z ∈ X. Assume that x � y � z (the case z � y � x

follows by similar reasoning). We show that for all P ∈ P in the support of µ: xPy implies

xPz. There are three cases:

(1) max(X,P ) � y. Then yPz. So if xPy then xPz.

(2) max(X,P ) = y. Then max(X,P ) = y so xPy cannot hold.

(3) y � max(X,P ). Then yPx, so xPy cannot hold.

Hence, it follows that ρ(x, y) =
∑

P :xPy µ(P ) ≤
∑

P :xPz µ(P ) = ρ(x, z). We next show

sufficiency. It is clear that MID implies AST. Hence ρ has a RUM representation with

preferences Pθ as constructed in the proof of theorem 2.3. We show that these preferences

satisfy the single-peakedness condition. If max(Pθ, X) � x � y then since max(Pθ, X)Pθy

it follows by construction of Pθ that ρ(y,max(Pθ, X)) < θ. Hence, an application of MID

gives ρ(y, x) ≤ ρ(y,max(Pθ, X)) < θ implying that xPθy. If y � x � max(X,Pθ) then

since max(Pθ, X)Pθx it follows by construction of Pθ that ρ(max(Pθ, X), x) ≥ θ. Several

applications of MID gives ρ(x, y) ≥ ρ(max(Pθ, X), y) ≥ ρ(max(Pθ, X), x) ≥ θ, so xPθy. �

We next consider a class of stochastic choice functions inversely related to SPRUM, the

single-dipped random utility model. Let min(X,P ) denote the worst alternative in X ac-

cording to preference P ∈ P .16 A preference relation P is single-dipped if x � y � min(X,P )

or min(X,P ) � y � x implies xPy. A random utility model µ is a single-dipped random

utility model (SDRUM) if every preference P in the support of µ is single-dipped. Perhaps

not surprisingly, this model is characterized by a property inversely related to MID.

Monotone decreasing demand (MDD). For all x, y, z ∈ X: If x � y � z or z � y � x

then ρ(x, z) ≤ ρ(x, y).

To the best of our knowledge the MDD property is novel. Analogously to MID, this

property says that the demand for x (weakly) decreases when the distance to the other

16I.e. yP min(X,P ) for all y ∈ X \ {min(X,P )}.
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alternative increases. A somewhat subtle point is that MDD implies AST (in contrast to

MID that trivially implies AST). To see this, assume that x � y � z or z � y � x. The MDD

property then implies that ρ(z, x) ≤ ρ(z, y) (this follows by ”relabeling” of alternatives).

Since ρ(z, x) ≤ ρ(z, y) we have ρ(x, z) ≥ ρ(y, z) ≥ min{ρ(x, y), ρ(y, z)}. Hence AST follows

from MDD.

Similarly, but opposite to the case of MID, the MDD property can be interpreted as a

convexity condition imposed on the preferences in the support of the RUM. Example 3.1

shows that MID and MDD are distinct properties since the MID property is satisfied with

strict inequality in its conclusion (implying that MDD is violated). Example 3.1 can also be

”reversed” to show that there are stochastic choices that satisfy MDD with strict inequality

(and hence violate MID).17

Similar to SPRUMs, the single-dipped condition is closely related to quasiconvexity of

the preferences in the support of the RUM. Define a preference P to be quasiconvex if

x � y � z or z � y � x implies that xPy or zPy. Appendix C.3 shows that a preference P

is quasiconvex if and only if it is single-dipped. From the previous discussion it is quite clear

that MDD is a necessary property in a characterization of SDRUM. The next proposition

shows that this property alone characterizes SDRUM.

Proposition 3.3. A binary stochastic choice function ρ satisfies MDD if and only if it is a

single-dipped random utility model.

Proof. We first show necessity. Let x, y, z ∈ X. Assume that x � y � z (the case z � y � x

follows by similar reasoning). We show that for all P ∈ P in the support of µ: xPz implies

xPy. There are three cases:

(1) min(X,P ) � y. Then zPy. So if xPz then xPy.

(2) min(X,P ) = y. Then xPy always holds.

(3) y � min(X,P ). Then xPy always holds.

Hence, it follows that ρ(x, y) =
∑

P :xPy µ(P ) ≥
∑

P :xPz µ(P ) = ρ(x, z). We next show

sufficiency. It is shown in the main text that MDD implies AST (see paragraph following

the statement of MDD). It thus follows that ρ has a RUM representation with preferences

Pθ as constructed in the proof of the theorem 2.3. We show that these preferences satisfy the

single-dippedness condition. If min(Pθ, X) � y � x then since xPθ min(Pθ, X) it follows by

17To see this, let everything be the same as in example 3.1 except that u1(α) = (α−y)2 and u2(α) = (α−2)2,
so that u1 and u2 are convex on the interval [0, 1]. Similar arguments as in example 3.1 show that ρ(x, z) =
0 < 1

2 = ρ(x, y).
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construction of Pθ that ρ(x,min(Pθ, X)) ≥ θ. Hence, an application of MDD gives ρ(x, y) ≥
ρ(x,min(Pθ, X)) ≥ θ implying that xPθy. If x � y � min(X,Pθ) then since yPθ min(Pθ, X)

it follows by construction of Pθ that ρ(min(Pθ, X), y) < θ. Several applications of MDD

gives ρ(y, x) ≤ ρ(min(Pθ, X), x) ≤ ρ(min(Pθ, X), y) < θ, so xPθy. �

MID and MDD require the demand for x to weakly decrease/increase when the distance

to another alternative increases. Relatedly, one may also ask what happens if both MID and

MDD hold, i.e. if we impose a condition requiring the demand for x to remain unchanged

when the distance to another alternative increases.

Monotone indifferent demand (MIND). For all x, y, z ∈ X: If x � y � z or z � y � x

then ρ(x, z) = ρ(x, y).

Given that MID corresponds to a case of quasiconcave preferences, and MDD corresponds

to a case of quasiconvex preferences, it is perhaps not surprising that MIND corresponds to

a case of linear preferences in the support of the RUM. As the following proposition shows,

MIND implies that all preferences in the support of µ either linearly increases or decreases

with �. In our setting this means that they are either completely aligned or completely

unaligned with �.

Proposition 3.4. A binary stochastic choice function ρ satisfies MIND if and only if there

is an α ∈ [0, 1] such that for all x, y ∈ X: ρ(x, y) = α if x � y (i.e. ρ is a RUM with

measure µ that puts probability α on � and remaining probability 1−α on its reverse order).

Proposition 3.4 follows as a corollary to proposition 3.2 and proposition 3.3. To see this,

note that MIND implies MID and MDD. By MID it follows that ρ is a single-peaked RUM.

Suppose that there is a preference P in the support of the RUM that is not equal � or

its reverse order. Then there are x � y � z such that yPxPz or yPzPx. If yPxPz

then ρ(x, y) < ρ(x, y) + µ(P ) ≤ ρ(x, z). This violates MDD. If yPzPx then ρ(z, y) <

ρ(z, y) + µ(P ) ≤ ρ(z, x). A violation of MDD.

4. Concluding remarks

We characterized the single-crossing random utility model (and subclasses of it) using

versions of stochastic transitivity. As noted, the representation of a SCRUM on binary

menus is unique,18 which justifies the collection of binary menus as an ideal environment

18This follows by inspection of the proof of proposition 1 (p.672) in Apesteguia et al. (2017).
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to study SCRUMs. An avenue for future research is to experimentally test the properties

introduced above by using similar two alternative forced choice designs as in Tversky (1969)

and Regenwetter et al. (2011).
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Appendix A. Equivalent formulations of AST

The aim of this section is to show that our different formulations of the AST property are

equivalent. Before doing so we state yet another formulation of AST.

Aligned Stochastic Transitivity” (AST”). For all x, y, z ∈ X and α ∈ [0, 1]: If x � y � z

or z � y � x then ρ(x, y) ≥ α and ρ(y, z) ≥ α implies ρ(x, z) ≥ α.

The following lemma shows that AST, AST’ and AST” are equivalent properties and that

AST can be replaced with either AST’ or AST” in our characterization of binary SCRUMs.

Lemma A.1. Let ρ be a binary stochastic choice function. Then AST, AST’ and AST” are

equivalent properties.

Proof. We show the implications AST’ ⇒ AST ⇒ AST” ⇒ AST’.

(AST’⇒ AST): Let x, y, z ∈ X with x � y � z or z � y � x. If x � y � z then AST’ implies

ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}. If z � y � x then AST’ implies max{ρ(y, x), ρ(z, y)} ≥
ρ(z, x), which is equivalent to ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.

(AST⇒ AST”): Let x, y, z ∈ X and α ∈ [0, 1] with ρ(x, y) ≥ α and ρ(y, z) ≥ α. If x � y � z

or z � y � x then AST implies that ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)} ≥ α. Thus AST” holds.

(AST” ⇒ AST’): Let x, y, z ∈ X with x � y � z. Set α = min{ρ(x, y), ρ(y, z)}. Then

ρ(x, y) ≥ α and ρ(y, z) ≥ α, so AST” implies that ρ(x, z) ≥ α = min{ρ(x, y), ρ(y, z)}.
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Set α′ = min{ρ(y, x), ρ(z, y)} then ρ(y, x) ≥ α′ and ρ(z, y) ≥ α′, so another applica-

tion of AST” gives ρ(z, x) ≥ α′ = min{ρ(y, x), ρ(z, y)} and this implies that ρ(x, z) ≤
max{ρ(x, y), ρ(y, z)}. �

Appendix B. Discussion of strong aligned stochastic transitivity

A property related to, but stronger than, our main stochastic transitivity property is the

following.

Strong aligned stochastic transitivity (SAST). For all x, y, z ∈ X: If x � y � z or

z � y � x then

ρ(x, z) ≥ max{ρ(x, y), ρ(y, z)}.

Note that SAST strengthens the conclusion of AST by requiring ρ(x, z) to be larger than

both ρ(x, y) and ρ(y, z). The following proposition shows that this condition is, in a way,

too strong. It is only satisfied by a very restricted class of stochastic choice functions.

Proposition B.1. A binary stochastic choice function ρ satisfies SAST if and only if there

is an α ∈ [0, 1] such that for all x, y ∈ X: ρ(x, y) = α if x � y (i.e. ρ is a RUM with

measure µ that puts probability α on � and remaining probability 1−α on its reverse order).

Proof. To prove sufficiency it suffices (by proposition 3.4) to prove that SAST implies MIND.

Let x � y � z or z � y � x then SAST implies that ρ(x, z) ≥ max{ρ(x, y), ρ(y, z)} ≥ ρ(x, y)

and by ”relabeling” that ρ(z, x) ≥ max{ρ(z, y), ρ(y, x)} ≥ ρ(y, x) so ρ(x, z) ≤ ρ(x, y). Hence

ρ(x, y) = ρ(x, z).

Conversely, let ρ be such that there is an α ∈ [0, 1] such that for all x, y ∈ X: ρ(x, y) =

α if x � y. Let x, y, z ∈ X. If x � y � z then ρ(x, z) = α = ρ(x, y) = ρ(y, z) so

ρ(x, z) ≥ max{ρ(x, y), ρ(y, z)}. If z � y � x then ρ(x, z) = 1 − α = ρ(x, y) = ρ(y, z) so

ρ(x, z) ≥ max{ρ(x, y), ρ(y, z)}. �

Appendix C. Proofs and examples omitted from main text

C.1. Example showing that MST is not implied by AST.

Example C.1. Let X be a set with three alternatives x � y � z. Let ρ have a SCRUM

representation w.r.t. �. More precisely, ρ is represented by a SCRUM µ with equal prob-

abilities put on orders P1 and P2 that are such that yP1zP1x and xP2yP2z. Since ρ is a
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SCRUM w.r.t. � it follows by theorem 2.3 that ρ satisfies AST. However, ρ fails to satisfy

MST, since ρ(z, x) = 1
2

and ρ(x, y) = 1
2
, but ρ(z, y) = 0 < 1

2
= min{ρ(z, x), ρ(x, y)}. /

C.2. Proof of proposition 2.1. Let x, y, z ∈ X with ρ(x, y) > 1
2

and ρ(y, z) > 1
2
. There

are six mutually exhaustive cases:

(1) x � y � z. Then AST gives ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.
(2) z � y � x. Then AST gives ρ(x, z) ≥ min{ρ(x, y), ρ(y, z)}.
(3) x � z � y. Then AST implies that ρ(y, x) ≥ min{ρ(y, z), ρ(z, x)}. Hence, since

ρ(y, z) > 1
2
> ρ(y, x), it follows that ρ(y, x) ≥ ρ(z, x), which in turn implies that

ρ(x, z) ≥ ρ(x, y) ≥ min{ρ(x, y), ρ(y, z)}.
(4) y � z � x. This case follows by similar reasoning as the previous one.

(5) z � x � y. Then AST implies that ρ(z, y) ≥ min{ρ(z, x), ρ(x, y)}. Hence, since

ρ(x, y) > 1
2
> ρ(z, y), it follows that ρ(z, y) ≥ ρ(z, x). Hence ρ(x, z) ≥ ρ(y, z) ≥

min{ρ(x, y), ρ(y, z)}.
(6) y � x � z. This case follows by similar reasoning as the previous one. �

C.3. Proofs on quasiconcavity and quasiconvexity. We first prove that a preference

P is single-peaked if and only if it is quasiconcave.

Lemma C.2. A preference relation P is single-peaked if and only if it is quasiconcave.

Proof. Suppose that P is single-peaked. Assume that x � y � z (the case z � y � x follows

by similar reasoning). We show that xPy implies yPz. There are three cases:

(1) max(X,P ) � y. Then max(X,P ) � y � z so yPz.

(2) max(X,P ) = y. Then, clearly yPz.

(3) y � max(X,P ). Then x � y � max(X,P ) so yPx and hence xPy cannot hold.

Conversely, assume that P is quasiconcave. Assume that max(X,P ) � x � y (the case

y � x � max(X,P ) is similar). Assume by contradiction that yPx then quasiconcavity of

P implies that xP max(X,P ). A contradiction. Hence xPy. �

We next prove that single-dippedness and quasiconvexity are equivalent properties for a

preference relation P .

Lemma C.3. A preference relation P is single-dipped if and only if it is quasiconvex.

Proof. We first show necessity. Let x, y, z ∈ X. Assume that x � y � z (the case z � y � x

follows by similar reasoning). We show that yPx implies zPy. There are three cases:
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(1) min(X,P ) � y. Then min(X,P ) � y � z so zPy.

(2) min(X,P ) = y. Then xPy, a contradiction to yPx.

(3) y � min(X,P ). Then x � y � min(X,P ), so xPy. A contradiction to yPx.

Conversely, assume that P is quasiconvex. Assume that min(X,P ) � y � x (the case

x � y � min(X,P ) is similar). Assume by contradiction that yPx then quasiconvexity of P

implies that min(X,P )Py. A contradiction. Hence xPy. �

C.4. Proof that the binary SCRUM and strict Fechnerian model are disjoint. We

will in this section show that the strict Fechnerian model is disjoint from SCRUM provided

that X contains five or more alternatives. A binary SCF ρ will be called a strict Fechnerian

SCF if it satisfies the following two properties.

Stochastic completeness (SC). For all x, y ∈ X: ρ(x, y) 6= ρ(y, x).

Strong stochastic transitivity (SST). For all x, y, z ∈ X: If ρ(x, y) > 1
2

and ρ(y, z) > 1
2

then

ρ(x, z) > max{ρ(x, y), ρ(y, z)}.

It follows by the main result in Tversky and Russo (1969) that a binary SCF ρ satisfies

the above properties if and only if there is a strict utility function u such that ρ(x, y) =

F (u(x), u(y)) for all x, y ∈ X where F is a real valued function which is strictly increasing

in the first argument and strictly decreasing in the second. The following lemma will be

needed to show that the strict Fechnerian model is disjoint from SCRUM.

Lemma C.4. Let a, b, c, d, e ∈ X with a � b � c � d � e and let u be a strict utility

function on X. Then there are three elements x, y, z ∈ X such that x � y � z and either

u(x) > u(y) > u(z) or u(z) > u(y) > u(x).

Proof. Assume by way of contradiction that there are no triplets of alternatives satisfying the

conclusion of the lemma. W.l.o.g. we assume that u(a) < u(b) (the other case is symmetric).

Then u(b) > u(c), which in turn implies that u(c) < u(d), implying that u(d) > u(e).

Further, u(a) < u(b) implies that u(b) > u(d). But, the latter inequality implies that

u(d) < u(e). We have arrived at the contradiction that u(d) > u(e) and u(d) < u(e). �

It follows as a corollary to the proposition below that the set of strict Fechnerian SCFs is

disjoint from SCRUM (provided |X| ≥ 5).
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Proposition C.5. If |X| ≥ 5 then there is no strict Fechnerian SCF that satisfies AST.

Proof. Assume that ρ satisfies SC and SST. It is then straightforward to verify that there is

a strict utility function u such that u(x) > u(y) if and only if ρ(x, y) > 1
2
. Let � be an order

on X. Since |X| ≥ 5 there are five alternatives a, b, c, d, e ∈ X such that a � b � c � d � e.

Lemma C.4 implies that there are three alternatives x � y � z such that u(x) > u(y) > u(z)

or u(z) > u(y) > u(x). If u(x) > u(y) > u(z) then ρ(x, z) > max{ρ(x, y), ρ(y, z)}. A

contradiction to formulation AST’ of AST in appendix A. If u(z) > u(y) > u(x) then

ρ(z, x) > max{ρ(z, y), ρ(y, x)} so ρ(x, z) < min{ρ(x, y), ρ(y, z)}, a contradiction to AST. �
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