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Abstract. Multivalued choice rules, or choice correspondences, are effective means to de-

scribe a wide array of behaviors conforming to and deviating from rationality. Modeling

heterogeneity in such behaviors is problematic as it gives rise to serious identification issues.

We introduce a model of stochastic choice that is general enough to explain a high degree

of heterogeneity in multivalued choice, yet with good identification properties. We provide

two main applications. First, we study satisficing behavior in the spirit of Simon (1955).

Second, we introduce a dynamic version of our model and use it to study long run behavior

of individuals.

1. Introduction

The analysis of this paper rests on two important and, to various extents, empirically

validated theses about human choice behavior.

(1) Individual behaviors are fundamentally multivalued and hence described by choice

correspondences.

(2) Individuals display differences in their behaviors, i.e. there is heterogeneity in choice

behaviors.

As for (1), multivalued - as opposed to single valued - choice rules are ubiquitous in de-

scribing human choice behavior. Whether dealing with behaviors conforming to or deviating

from rationality, some behaviors are necessarily expressed as properties of a choice corre-

spondence. For instance, modeling the behavior of a rational, utility maximizing, individual

requires a choice correspondence in describing the potential indifference classes of the indi-

vidual. Similarly, the behavior of an indecisive individual is intrinsically multivalued, and

a choice correspondence is needed to describe the sets of alternatives that cause indecisive-

ness. What is more, distinguishing between these two modes of choice is virtually impossible

with single valued choice functions. Choice correspondences are also essential in describing

many behaviors outside the rational paradigm,1 such as the behavior of individuals who only

pay attention to a subset of alternatives (Masatlioglu, Nakajima, and Ozbay, 2012), use a
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1Abundant evidence, as well as introspection, suggests that individuals may fail to adhere to the basic tenets
of rationality (see e.g. Tversky (1969), Huber, Payne, and Puto (1982), Loomes, Starmer, and Sugden (1991),
Harbaugh, Krause, and Berry (2001),Echenique, Lee, and Shum (2011),Apesteguia and Ballester (2015)).
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sequence of criteria to narrow down choice (Manzini and Mariotti, 2007), or use a set of

rationales/criteria to justify choice (Cherepanov, Feddersen, and Sandroni, 2013).

Concerning (2) there is pervasive evidence supporting the thesis that individuals display

differences in their tastes/preferences and other behavioral traits affecting choice.2 Model-

ing such choice heterogeneity poses a number of challenges for the researcher. Particularly

pressing is the non-uniqueness or identification issue caused by the the large number of pa-

rameters in such models. This means that there are multiple distinct (i.e. non-unique) sets

of parameters inducing exactly the same observable behavior. Roughly speaking, with many

types there are many parameters compared to the number of observations in the data. Non

uniqueness of the parameters then arises for much the same reason as it does in an equation

system with fewer equations than unknowns. This non uniqueness or lack of identifiability

of a models underlying parameters is problematic for several reasons, hindering important

tasks such as parameter estimation, comparative statics and out-of-sample predictions.

To further appreciate the identification issue in models of choice heterogeneity, note that

even apparently simple models of choice heterogeneity fail to be identified. An example is

the popular random utility model. It posits a probability distribution on a set of preference

maximizing types. The choice probability of an alternative is the sum of probabilities of

types having the alternative as their top choice. The random utility model is thus only able

to explain heterogeneity in tastes/preferences. Despite the limited degree of heterogeneity

tolerated by the random utility model, it is well-known to suffer from identifiability issues.

Even the simplest version of the random utility model, with only two distinct preference

maximizing types, is unidentified.3

In this paper we study a generalization of the random utility model that allows for het-

erogeneity in choice types described by multivalued choice rules. The model thus posits a

probability distribution on a set of choice correspondences. Our main result is on identifi-

cation of the underlying type distribution. Since our proposed model has a larger number

of heterogeneous types, and contains the random utility model as a special case, the identi-

fication issue is even more pressing. To appreciate the extent of the issue, note that there

are more than twenty million different choice correspondences on a collection of menus con-

sisting of a set of four alternatives and its subsets.4 Compare this figure to the number of

preference orderings (24) and it is easy to see (given the identification issues already posed

2There is evidence from diverse fields such as finance (Curcuru, Heaton, Lucas, and Moore, 2010) on portfolio
choice, discrete choice (Train, 1998) on anglers’ choices of fishing site, on commuting mode choice (Greene
and Hensher, 2010) and from marketing (Draganska and Klapper, 2011) on the role of advertising on choice
set heterogeneity.
3See e.g. Fishburn (1998) and Turansick (2021) for a discussion. Given the identifiability issues of the random
utility model, Turansick (2021) discusses necessary and sufficient conditions on choice data such that it is
identified.
4More precisely, there are (24−1)(23−1)4(22−1)6 = 26, 254, 935 choice correspondences on a menu collection
consisting of a set of four elements and its subsets.
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by the random utility model) that identification within our model is challenging. Due to this

we focus on a special case of the general model. To ensure identification within our model

we impose two important, yet flexible, assumptions.

As a first crucial assumption, we impose a sequential condition on the collection of types

in our model. Informally, a collection of choice types is sequential if they can be ordered such

that choice sets of higher types are subsets of those of lower types. Examples of models that

satisfy this condition are abundant (several examples are in section 2) and include models

where an individual sequentially narrows down choices by using a sequence of criteria. Later

survivor sets are then subsets of earlier sets. A wealth of models in the literature have this

structure. Manzini and Mariotti (2007) introduce and characterize a model of two stage

sequential choice.5 Their model is later generalized in several interesting directions. Notably,

both Manzini and Mariotti (2012) and Apesteguia and Ballester (2013) discuss characteriza-

tions of multi-stage versions of the baseline model in Manzini and Mariotti (2007). A closely

related model is also the gradual pairwise comparison rule of Dutta (2020). Another example

is provided within the theory of incomplete preferences (see e.g. Aumann (1962), Eliaz and

Ok (2006) and Galaabaatar and Karni (2013)). Consider an indecisive individual with an

incomplete preference relation and suppose that there is heterogeneity in the degree of deci-

siveness of the individual (i.e. in the number of pairs of alternatives that she can compare).

This behavior can be modeled using a sequential collection of choice correspondences, where

choice sets corresponding to states of mind where the individual is more decisive are subsets

of those where the individual is less decisive.

Our second assumption is an exogenous/observed tie-breaking or reference rule. To explain

this assumption let us first explain the role of a reference/tie-breaking rule in our setting.

We assume that the outside observer/researcher/analyst has access to standard stochastic

choice data, which is a collection probability distributions on single valued choices. Whether

elicited through experiments or empirically observed, this is the type of data most common

in practice.6 Since types in our model are described by choice correspondences that assign

sets of alternatives to menus, and data appears as a probability distribution on single valued

choices, our model posits that individuals use a reference/tie-breaking rule (depending on the

behavior studied) to arrive at a final (single) choice. We discuss several examples of reference

rules below.

5Dutta and Horan (2015) discuss the important issue of identification in the two stage sequential choice
model.
6An alternative approach would be to consider a probability distribution over sets as an observed primitive.
Only a few recent papers propose methods to elicit (deterministic) choice correspondences directly using
(non-) forced multivalued choice tasks (see e.g. Agranov and Ortoleva (2017), Costa-Gomes, Cueva, and
Gerasimou (2021), Bouacida (2021), Gerasimou (2021) and references therein). However, these papers are
mainly situated in a deterministic (non-repeated) setting. To the best of our knowledge experimental or
empirical data on repeated multivalued choices is rare. See Balakrishnan et al. (2021) for an elaboration on
closely related issues.
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The exogeneity assumption on the reference rule means that the researcher observes the

reference rule used by individuals. This is a plausible assumption in many applications.7

In a dynamic choice environment individuals may look at past periods’ choices to inform

their current choices and choose alternatives based on their popularity in previous periods

(we will study this sort of behavior in section 6, where we introduce a dynamic version of

our model). If the researcher has access to time series data then each periods’ choices may

serve as a reference rule for next period’s choices and is hence observed by the researcher.

In an online environment individuals may use a common set of criteria such a price in as-

cending/descending order, discount or popularity to choose among considered alternatives.

When indifferent between alternatives, it is conceivable that individuals uniformly random-

ize to break ties. Or, another class of examples, is when the reference rule is induced by a

strict reference order reflecting the ingrained characteristics of alternatives. Such reference

orders arise in many economically relevant situations and we refer to section 4 for a further

discussion.

To summarize, our model, the Random Sequential Model (RSM) posits a type distribution

µ on a set of choice types/correspondences (Ci)i∈I satisfying our sequential condition,8 such

that the probability of a being chosen from menu A is

(1) ρ(a,A) =
∑
i∈I

µiπ(a, Ci(A)),

where π is an exogenous reference rule. Note that Ci(A) is the multiset of choices of type i.

The reference rule π is used to choose a final single alternative a from Ci(A) with probability

π(a, Ci(A)).

Our main result is on identification of the underlying type distribution. As explained above,

we assume observability/exogeneity of the reference rule. We find characterizing conditions on

the reference rule such that every stochastic choice function has a unique representation with

respect to the reference rule. The main property is a weak version of regularity. Regularity,

roughly speaking requires alternatives in a set to be chosen with positive probability whenever

they are chosen with positive probability in a superset (a set containing it). A corollary to

our identification result is that the underlying type distribution is unique if the reference rule

is regular. A host of different reference rules satisfy regularity. Examples include random

reference orders (which are probability distributions on reference orders) logit/Luce reference

rules and uniform reference rules (formally a special case of Luce rules). The weak regularity

property is also consistent with highly irregular choice patterns. For instance, any reference

rule induced by a deterministic single valued choice function, satisfy this condition. After

7In other contexts (such as when the reference rule corresponds to a behavioral trait of the decision maker)
it needs to be inferred from choice data and we discuss this issue further in section 8.1
8Mathematically, this condition can be expressed as C1(A) ⊇ ... ⊇ C|I|(A) for all menus A.
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establishing our main identification result, we apply it in section 4 to study various examples

of reference rules.

To illustrate the versatility of the proposed framework we discuss three main applications.

In section 5 we use the framework to study more specific sequential rules. In particular

we provide characterizations of stochastic versions of Simon’s satisficing procedure.9 An

agent using a satisficing procedure considers all alternatives with satisfaction exceeding some

random (possibly menu dependent) threshold. A reference rule is then used to discriminate

between alternatives exceeding the threshold. Such rules have a sequential structure as sets

of alternatives with satisfaction levels exceeding higher thresholds are subsets of those with

lower thresholds. Prior literature has mainly focused on deterministic choice (e.g. Aleskerov

et al. (2007), Manzini et al. (2013) and Frick (2016)) and cases where the reference rule

is uniform. We extend these results by considering an array of empirically relevant tie-

breaking/reference rules. The main property is an acyclicity condition imposed on pairs of

alternatives. This condition can be checked by using the algorithmic construction in the

proof of our main representation result. We also discuss examples of tie-breaking rules where

this condition is particularly easy to check, such as when the reference rule is a logit rule.

A second main application of our framework is in section 6 where we introduce a dynamic

version of our model and use it to study long run behavior of individuals. In the dynamic

setting there is a particularly illuminating interpretation of the reference rule as a proxy for

previous periods’ choices. In line with a large literature on social learning (see e.g. Banerjee

(1992), Becker (1991), Ellison and Fudenberg (1993), Acemoglu et al. (2011) and Che and

Hörner (2018)) we assume that individuals use information on past periods’ choices (i.e. the

choices of others) to inform todays’ choices. In particular, they sort alternatives based on their

popularity in previous periods and then choose alternatives with probability proportional to

their popularity. As an example, consider an individual who is deciding on a pair of new

sneakers using an online shopping service. She is indifferent between several pairs of shoes.

To break ties, she sorts them based on their popularity (in previous periods) and chooses each

alternative with probability proportional to their popularity. This sort of popularity based

updating behavior is not peculiar to the preceding example. Indeed, mounting evidence

suggests that individuals are more likely to choose alternatives that appear higher up in

(popularity) lists.10

Our aim is to use the dynamic model to study long run behavior of individuals. If each

individual in a population of individuals uses a popularity based updating rule, will their

9See Simon (1955). A stochastic version of this model is also studied in Dardanoni et al. (2022).
10For recent evidence see Joachims et al. (2005) who find evidence on ”trust bias” which leads to more clicks
on links that are ranked higher up by Google’s search engine.
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long run behavior converge? And, if so, what will it converge to?11 We identify sufficient

conditions on the type distribution such that long run behavior converges. Further, we show

that it converges to the behavior of the highest type in the population. We show that a

range of relevant behaviors are consistent with our sufficient condition, such as when each

individual in the population is a satisficer (Simon, 1955), a checklist user (Mandler, Manzini,

and Mariotti, 2012) or a rationalizer (Cherepanov, Feddersen, and Sandroni, 2013). It follows

that long run behavior converges to the behavior of the highest type in each of these models.

A final application is in section 7 where we discuss an extension of the progressive random

choice model of Filiz-Ozbay and Masatlioglu (2022). As mentioned, their model is defined as

a probability distribution over single valued choice functions where the collection of choice

functions in the support of the distribution satisfy a property called progressiveness. Roughly

speaking, a collection of choice functions is progressive with respect to a strict reference order

if they can be ordered in such a way that choice functions higher up in the ordering are more

aligned with the reference order than choice functions lower down. We extend their framework

to a case where the reference rule is an arbitrary single valued choice function. In particular,

it follows as corollary to our main identification result that this model is identified.

Section 8 concludes the paper with a discussion of extensions and special cases of our

framework. Subsection 8.1 relaxes the observability assumption on the reference rule and

discusses a sufficient condition under which both the reference rule and underlying type

distribution are revealed by choice data. Subsection 8.2 closes with a short discussion on the

relation between our work and the works of Apesteguia et al. (2017) and Filiz-Ozbay and

Masatlioglu (2022). In particular, we show that both of their models can be viewed as special

cases of our framework.

1.1. Related literature. This paper is related to a literature that aims to address issues

of identification in models with choice heterogeneity. With our sequential condition we join

a recent literature that uses sorted type spaces to obtain identification in mixture mod-

els. In particular, our sequential condition generalizes both the single-crossing condition

in Apesteguia, Ballester, and Lu (2017) and progressiveness in Filiz-Ozbay and Masatli-

oglu (2022). We elaborate on the relation to Apesteguia et al. (2017) and Filiz-Ozbay and

Masatlioglu (2022) in subsection 8.2. Our paper is also related to Apesteguia and Ballester

(2021) who explore menu restrictions in characterizations of the random utility model with

ordered types and domains. Their objective is to meet empirical requirements by working

with arbitrary domains and they illustrate the practicality of their results by applying them

to empirically and experimentally important menu collections such as those with menus com-

posed of lotteries from the Marschak-Machina triangle. Similar to Apesteguia and Ballester

11Similar questions are, independently from us, explored in Analytis, Cerigioni, Gelastopoulos, and Stojic
(2022).
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(2021) our main results on identification apply to arbitrary menu collections. In addition,

our results allow for possibly multivalued and non-rational types.12

There is also a burgeoning literature that has made good progress to achieve identification

in models with heterogeneity across both preferences and cognition (such as attention and

mood). Notable contributions are Goeree (2008), Abaluck and Adams-Prassl (2021) and

Barseghyan, Coughlin, Molinari, and Teitelbaum (2021). Recently, Dardanoni et al. (2022)

study identification in models with heterogeneity across preferences and cognition, assuming

that the analyst has access to mixture choice data (which is richer than traditional stochastic

choice data in that it records correlation among alternatives). In contrast to Dardanoni et al.

(2022), we work with traditional stochastic choice data.13 In our main identification result

we assume observability of the reference rule and obtain identification of the underlying type

distribution. Later, we relax this requirement and impose a condition called binariness in

section 4. Roughly speaking, it requires all individuals to pay full attention in binary menus.

Similarly to the aforementioned studies, it allows us to obtain identification of both preference

parameters and the underlying type distribution.

2. Model

We denote by X a finite set of alternatives. A nonempty subset A ⊆ X is called a menu.

Let A denote the collection of all nonempty subsets of X.14 A stochastic choice function

(SCF) is a function ρ : X ×A 7→ [0, 1] such that for all menus A ∈ A:
∑

a∈A ρ(a,A) = 1 and

ρ(a,A) = 0 for all a ∈ X \ A. The quantity ρ(a,A) can either be interpreted as the fraction

of times (in repeated trials) that an individual chooses alternative a from menu A, or as the

fraction of individuals in a population that chooses a from A. The object ρ is the empirical

primitive in our exercise and is observed by an outside observer/researcher/analyst. The aim

of the researcher is to use ρ to infer properties about underlying behavior.

2.1. Choice correspondences and reference/tie-breaking rules. To state our main

model, we will need some further preliminaries. The behavior of each type/individual in

our model is described by a choice correspondence. Formally, a choice correspondence is

a function C : A → 2X \ ∅ such that C(A) ⊆ A for all A ∈ A. Single valued choice

correspondences, i.e. choice correspondences C such that |C(A)| = 1 for all A ∈ A are called

choice functions. Choice functions are denoted with lower case c.

12For similar considerations as in Apesteguia and Ballester (2021) see also Petri (2021) who characterizes the
single-crossing random utility model restricted to the collection of binary menus.
13Recently, Kashaev and Aguiar (2021) obtain identification results in a model with random attention and
preference heterogeneity. Similar to us they only need standard stochastic choice data.
14Many of our results hold for arbitrary menu collections. We will indicate whenever this is the case.
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In contrast to choice functions, choice correspondences are generally not univalent (single

valued). Nevertheless, our observed primitive (an SCF) associates to each menu A a proba-

bility distribution on single choices a in A. To arrive at a final single choice, we will assume

that each type/individual uses a common reference/tie-breaking rule.

Definition 2.1. A reference/tie-breaking rule is a stochastic choice function π : X×2X \∅ →
[0, 1]. A positive reference rule is a reference rule such that π(a,A) > 0 for all a ∈ A and

A ⊆ X. /

An individual described by a choice correspondence C will thus, in a given menu A, first

select a subset of alternatives C(A) and then randomize and choose alternatives a ∈ C(A)

with probability π(a, C(A)). To start with, we will assume that π is exogenous and observed

by the researcher. We will later relax this requirement. Ideally, the reference rule should

reflect application specific features of the studied problem. For instance, in a model with non

strict preferences/utility function, it seems conceivable that individuals resolve indifferences

by using a uniform rule. Whereas, in a dynamic setting, individuals may use information on

past choices to inform today’s choices (we will study this case further in section 6). In other

situations, other reference rules might be more appropriate.

2.2. Random Sequential Model. We consider stochatic choices that are goverened by a

probability distribution µ on choice correspondences in C. As explained in the introduction,

we impose a sequential condition on the set of correspondences in the support of the measure

µ.

Definition 2.2. A collection of distinct choice correspondences (Ci)i∈I is called sequential if

they can be ordered such that C1(A) ⊇ ... ⊇ C|I|(A) for all A ∈ A. /

We will give several examples of collections of correspondences that satisfy the sequential

condition below. We are now ready to introduce the main model studied in this paper.

Definition 2.3. A stochastic choice function ρ is called a Random Sequential Model (RSM)

w.r.t. a reference rule π if there is a finite set I = {1, ..., n}, a sequential collection of choice

correspondences C = (Ci)i∈I , and a probability measure µ with support on C such that

(1) ρ(a,A) =
∑
i∈I
µiπ(a, Ci(A)) for all a ∈ A and A ∈ A and

(2) Ci(A) ⊆ {a ∈ A : ρ(a,A) > 0} for all i ∈ I and A ∈ A.

/

Remark: If either π or ρ is positive, then condition (2) is implied by condition (1) and is

hence superflous. This condition is imposed in order to obtain identification of the underlying
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parameters of an RSM. To see why this condition is necessary for identification we refer the

reader to example B.1 in the Appendix.

The model operates in two stages. First, a choice correspondence Ci ∈ C is drawn from C
with probability µi and a subset of alternatives Ci(A) is chosen from a given menu A. In a

second stage, to arrive at a unique final choice in A type i then uses the common reference

or tie-breaking function π and chooses each alternative a ∈ A with probability π(a, Ci(A)).

An RSM restricts the support of µ to be sequential. We will next give several examples

of sequential correspondences to illustrate their prevalence in choice. Informally, we may

think of the set Ci(A) ⊆ A as the alternatives that are cognitively feasible to individual

i in menu A. For example, Ci(A) could be interpreted as the alternatives that individual

i pays attention to in menu A. Sequentialness of the correspondences (Ci)i∈I then means

that individuals can be ordered based on the severity of their cognitive constraints (or their

attention). We may thus assign a degree of attentiveness to each individual i based on their

rank according to this ordering. Alternatively, we may interpret sequentialness as a property

imposed on a set of correspondences of a single individual. Higher choice correspondences

then correspond to states of mind where the cognitive constraints of the decision maker are

more severe or to later survivor sets in a sequential elimination process employed by the

decision maker. Sequentialness is closely related to the progressiveness property in Filiz-

Ozbay and Masatlioglu (2022), as well as the single-crossing property in Apesteguia et al.

(2017). In particular, both of these models can be seen as special cases of our model (see

section 7 for further elaboration).

Our sequential condition imposes significant structure on the representation. For a broad

range of (exogenous) reference rules π, we show (in section 3) that any RSM representation

w.r.t. π is unique. At the same time, sequentialness is a permissive condition and has a

clear interpretation in an array of relevant and well studied choice models. We next provide

several examples.

Example 2.4. (Sequential rationalizable choice (Manzini and Mariotti, 2007)). There is a

sequence of asymmetric relations P1, ..., Pn such that C0(A) = A and Ck(A) = {x ∈ Ck−1(A) :

yPkx for no y ∈ Ck−1(A)}. In words, the decision maker first eliminates all alternatives

that are sub optimal according to P1. Among remaining alternatives she then eliminates

alternatives that are sub optimal according to P2 . She continues in a similar fashion until

all criteria Pi have been looked at. /

Example 2.5. (The gradual pairwise comparison rule (GPCR) (Dutta, 2020)). A decision

maker using a GPCR has a rational preference relation P on X, but she only considers pair-

wise comparisons according to P gradually, with the interpretation that easier comparisons

precede more difficult ones. Let X = {X1, ..., Xn} be an ordered partition of P . Define a
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collection (Ci)i∈{1,...,n} recursively as follows. Set C1(A) = A and for all 1 < k ≤ n set:

Ck(A) = {a ∈ Ck−1(A) : ∀b ∈ Ck−1(A), (b, a) /∈ Xk}.

By construction (Ci)i∈{1,...,n} is a sequential collection of choice correspondences. /

Example 2.6. (Satisficing behavior (Simon, 1955)). For each A ∈ A, let δ1(A), ..., δn(A) be

real numbers such that δ1(A) ≤ δ2(A) ≤ .... ≤ δn(A) and let u : X → R be a utility function.

Define Ci(A) = {a ∈ A : u(a) ≥ δi(A)}. I.e. each individual i only considers alternatives in

menu A that are above the threshold δi(A). Individuals share a common utility u but differ

in their level of satisfaction. /

Example 2.7. (Checklist users (Mandler, Manzini, and Mariotti, 2012)) A checklist user

has a finite collection of properties in mind and proceeds through the list sequentially. At

each step of the process, alternatives lacking the considered property are eliminated. The

agent proceeds in this way until all properties have been checked. Formally, a checklist P is a

finite set of properties P1, ..., Pn, where each property Pi is a subset of X. Define C1(A) = A

and for all 1 < k ≤ n

Ck(A) =

Pk ∩ Ck−1(A) if Pk ∩ Ck−1(A) 6= ∅

Ck−1(A) otherwise.

Clearly, (Ci)i∈{1,...,n} is a sequential collection of correspondences. /

Example 2.8. (Shades of indecisiveness/indifference) The decision maker is indecisive and

has an incomplete preference relation % on X. The degree of indecisiveness is stochastic.

This is formalized by a collection of transitive and reflexive relations %0, ...,%n on X such

that for each k, l ∈ {1, ..., n} with k < l we have that a �k b implies that a �l b. Define

Ck(A) = {x ∈ A : y �k x for no y ∈ A} for all A ∈ A. Then (Ci)i∈{1,...,n} is a sequential

collection of correspondences. A special case of this model is when each %i is a weak order

and the sizes of the indifference classes are stochastic. /

Example 2.9. (Multiple rationales) Individuals have multiple rationales in mind and only

considers alternatives that can be justified by some rationale.15 Formally, there is a collection

of preferences/rationales �1, ...,�n and each agent considers all alternatives a ∈ A that are

maximal according to some rationale �i. Thus, there is for each individual k ∈ I a subset

of rationales I(k) ⊆ {1, ..., n} such that Ck(A) =
⋃
j∈I(k) max(A,�j). If higher types use

fewer rationales, so that I(k) ⊆ I(l) if k > l, then the collection of choice correspondences

(Ci)i∈{1,...,n} used by these individuals is sequential. /

15See e.g. Kalai et al. (2002) and Cherepanov et al. (2013) who study models of rationalization.
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2.3. Representation. We are now ready to state our first result.

Theorem 2.10. Let π : X × A → [0, 1] be a reference rule. Then every stochastic choice

function ρ has a random sequential representation w.r.t. π.

Remark: As is clear by inspection of the proof of theorem 2.10 no domain assumption is

needed for it to go through. I.e. it holds for arbitrary menu collections A. This is convenient

for experimental design as it allows the researcher to choose the domain most suitable for

their particular experiment.

There are two main takeaways from theorem 2.10. First, fixing an exogenous reference

rule π theorem 2.10 says that any stochastic choice function has an RSM representation

w.r.t. this particular reference rule. This shows that our model has high explanatory power.

Second, according to theorem 2.10 any given stochastic choice function has a multitude of

different RSM representations, one for each reference rule π. This explains the role of the

exogeneity assumption on the reference rule, as without it the model would not be identified.

In the next section we will show that the underlying type distribution is identified assuming

an exogenous reference rule. We will later (section 8.1) also discuss cases where both the

reference rule and the underlying type distribution are revealed by data.

The proof of theorem 2.10 is constructive and delegated to appendix A.1. Our algorithmic

construction is different from and extends the construction in Filiz-Ozbay and Masatlioglu

(2022).16 The algorithm constructs both the probability measure µ as well as the corre-

spondences in its support recursively. In contrast the construction of µ in Filiz-Ozbay and

Masatlioglu (2022) calculates µ from the cumulative probabilities on lower contour sets of an

exogenous order �. Their construction thus depends on the existence of an exogenous linear

order �. Since we consider general (stochastic) reference rules we cannot straightforwardly

adapt their algorithm to our setting.

We next give a brief proof outline and description of the algorithm. The first choice

correspondence C1 is, for each menu, set equal to the set of alternatives chosen with positive

probability in the menu. The probability mass assigned to C1 is then equal to the minimum

of the ratio ρ(a,A)
π(a,C1(A))

among all alternatives a (chosen with positive probability) and all

menus A in the menu collection. Let a∗ and A∗ denote the alternative a∗ and menu A∗ that

achieve this minimum value. With this choice of µ1 it is clear that the defining formula for

an RSM will hold by construction for a∗ and A∗. Moreover, it assures that not too much

probability is deducted from the other choice probabilities in that ρ(a,A) ≥ µ1π(a, C1(A))

for all alternatives a and menus A. The next step of the construction defines correspondence

C2 to be equal to the support of the function ρ(a,A) − µ1π(a, C1(A)), i.e. the alternatives

16A similar algorithm is also considered in a prior working paper version of Dardanoni et al. (2022) where
they use it to prove a representation theorem for non-reversing random choice models.
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with positive probability that remains after deducting µ1π(a, C1(A)) from ρ(a,A). Similarly

to µ1, the probability mass µ2 assigned to C2 is then set equal to the minimum of the ratio
ρ(a,A)−µ1π(a,C1(A))

π(a,C2(A))
among all alternatives a in C2(A) and all menus A. One can also show

that this choice of µ2 assures that the defining formula for an RSM will hold exactly for the

alternatives that achieve the minimum ratio, and that not too much probability is deducted

from the other choice probabilities. A similar construction then defines Ck and µk from Ck−1

and µk−1. The remaining part of the proof is devoted to showing that the algorithm stops,

that each step of the algorithm is well-defined and that the constructed probabilities and

choice correspondences gives an RSM representation of the stochastic choice function ρ.

3. Identification

In this section we aim to address the issue of identification in the Random Sequential Model.

More precisely, given data on choices when are the parameters of the representation unique?

Such uniqueness properties are important for a variety of reasons, but perhaps most notably

for comparative statistics, out-of-sample prediction and estimation. Consider a policy maker,

who would like to analyze the effects of a certain policy on individual choices. This cannot be

done unambiguously if the model is unidentified. We establish a general identification result

that holds for a large class of RSMs. As a corollary, it follows that the class of progressive

random choice models in Filiz-Ozbay and Masatlioglu (2022) and the class of single-crossing

random utility models in Apesteguia et al. (2017) are identified. Moreover, any RSM with a

(strictly) positive reference rule is identified.

3.1. Regular reference rules. In line with our discussion above (paragraph following the-

orem 2.10), to ensure identification, we fix an exogenous/observed reference rule π. The

plausibility of this assumption was discussed in the introduction. The aim of this subsection

is to show that we obtain identification in the RSM model for a large class of exogenous

reference rules. A first observation is that there are reference rules π such that not every

stochastic choice function admits a unique representations w.r.t. π (see example C.1). This

section establishes a simple (and weak) sufficient condition on the reference rule to ensure

uniqueness. We will assume that the reference rule π satisfies the following condition.

Definition 3.1. A refererence rule is regular if for all a ∈ B ⊆ A: if π(a,A) > 0 then

π(a,B) > 0. /

Regularity requires a to be chosen with positive probability in a small set B whenever

it is chosen with positive probability in a larger set A containing B. This is a stochastic

analogue of the classic Chernoff property from deterministic choice and is a characterizing

property of single valued choice functions maximized by rational preference orders. If we

allow for multivalued or stochastic choice this is a fairly weak condition and is consistent with
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behaviors deviating from the rational paradigm (see section 4 for examples). The following

result shows that the Random Sequential Model is identified if π satisfies this condition.

Theorem 3.2. Let π be a regular reference rule. Then every stochastic choice function ρ

has a unique RSM representation with respect to π.

Remark: Similarly to our representation theorem 2.10, no domain assumption is needed for

theorem 3.2 to go through. It holds for arbitrary collections of menus A.

Theorem 3.2 already includes many cases of reference rules such as uniform reference

rules, random reference orders and logit reference rules (a more thorough discussion follows

in section 4 on applications). However, there are plausible reference rules that fail to satisfy

regularity.17 Perhaps surprisingly, it is possible to extend our identification result to cover

reference rules that admit quite wild regularity violations. The aim of the next subsection is

to extend theorem 3.2 as far as possible to include such cases.

3.2. Characterization. The previous subsection shows that regularity is sufficient for iden-

tification in the Random Sequential Model. Is it also necessary? I.e., if every stochastic choice

function has a unique RSM representation w.r.t. a reference rule π, does this imply that the

reference rule is regular? Fortunately, this is not the case, it turns out that a large class of

non-regular reference rules allows identification in our model. We will next find necessary

and sufficient conditions on π such that every stochastic choice function has a unique RSM

representation w.r.t. π. Our main characterizing property is a weak version of regularity and

is stated below.

Definition 3.3. A reference rule π is weakly regular if for all a ∈ B ⊆ A with π(b, A) > 0

for all b ∈ A \B: if π(a,A) > 0 then π(a,B) > 0. /

Weak regularity restricts regularity to all pairs of sets B ⊆ A where alternatives belonging

to A but not to B are chosen with strictly positive probability. This property is consistent

with a wide range of behaviors. Clearly any, regular choice function is weakly regular. Weak

regularity is also consistent with behaviors that can be considered highly irregular. For in-

stance, any stochastic choice function induced by a deterministic choice function satisfies

weak regularity. A concrete example of such a rule is if there are multiple reference orderings

�1, ...,�n and the choice function chooses an alternative that is maximal according to one

of these orderings (as in the choice by multiple rationales model of Kalai, Rubinstein, and

Spiegler (2002)). Such reference orderings are commonplace in applications. In online shop-

ping environments alternatives can often be sorted based on several attribute orders such as

price and popularity/customer rating. We will give more examples in section 4 where we

discuss applications.

17Subsection 4.3 contains examples.
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Theorem 3.4. Let π be reference rule. Then the following statements are equivalent:

(1) π satisfies weak regularity.

(2) Every stochastic choice function ρ has a unique RSM representation w.r.t. π.

The proof of theorem 3.4 follows the steps of the algorithmic construction in the proof

of theorem 2.10. Weak regularity is needed to ensure that there is a unique ”path” from

each step of the algorithm to the next. To show necessity of weak regularity we show its

contrapositive, i.e. that if π fails to satisfy weak regularity then it is possible to construct

an SCF with a non unique RSM representation. Example C.1 in the appendix illustrates the

necessity of weak regularity in theorem 3.4.

4. Specific reference rules

We next discuss special cases of our main model obtained by considering different examples

of reference rules π. More specifically, and in increasing order or specialization, we consider

cases where π is a random reference order (i.e. a probability distribution on strict reference

orders), a Luce/logit reference rule and a deterministic rule induced by a choice function.

4.1. Random reference order. In this section we consider a class of reference rules π that

are (menu dependent) probability distributions on collections of strict reference orders. A

reference rule π is random reference order if there are reference orders �1,...,�n and for each

menu A ∈ A corresponding probabilities α(A) = (α1(A), ..., αn(A))18 such that

π(a,A) =
n∑
i=1

αi(A)1{a = max(A,�i)}

for all a ∈ A and A ∈ A.

An RSM with a random reference order can be interpreted as a model where each choice

type uses a common set of reference orders to break ties among considered alternatives Ci(A),

and where each type entertains a particular reference order �k with common probability

αk(A). Consider an online shopping environment, customers can then sort alternatives based

on a common set of attributes such as price in ascending/descending order, customer rating,

discount and so on. We can model this by letting each order �i correspond to such an

attribute.

It follows as a direct corollary to theorem 2.10 that every stochastic choice function has

an RSM representation w.r.t. a fixed (exogenous) random reference order π. Since, every

random reference order π satisfies regularity it follows by corollary 3.2 that any ρ has a unique

representation w.r.t. π.

18I.e. where αi(A) > 0 for all i ≥ 1 and
∑n

i=1 αi(A) = 1.
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Proposition 4.1. Let π be a random reference order. Every stochastic choice function ρ has

an RSM representation w.r.t. π. Moreover, the representation is unique

4.1.1. Dual random reference order. A special case of the rule above is when there are only

two reference orders �1 and �2 that are randomly entertained by individuals. We call this a

dual random reference order. As an example, consider an online shopping environment where

customers can sort alternatives in ascending or descending order based on attributes such as

price. This can be modeled as a dual random reference order with support on a linear order

� (reflecting the attribute) and its reverse order �′ defined by a �′ b if and only if b � a.

The following proposition follows as a direct corollary to theorem 2.10 and proposition 4.1.

Proposition 4.2. Let π be a dual random reference order. Every stochastic choice function

ρ has an RSM representation w.r.t. π. Moreover, the representation is unique.

4.2. Logit reference rule. In this section we consider random sequential models with logit

tie-breaking/reference rules. A reference rule is a logit reference rule if there is a utility

function u : X → (0,∞) such that

π(a,A) =
u(a)∑
b∈A u(b)

for all a ∈ A and A ∈ A. This can be interpreted as a case where individuals use a

common reference order agreeing with u, but where they occasionally make misstakes and

choose suboptimal alternatives (or, alternatively, where they deliberately experiment and try

suboptimal alternatives) and where the probability of choosing a suboptimal alternative is

proportional to its utility. The following proposition follows as a corollary to theorem 2.10

and 3.4 (since π is positive).

Proposition 4.3. Let π be a logit reference rule. Every stochastic choice function ρ has an

RSM representation w.r.t. π. Moreover, the representation is unique.

4.3. Deterministic reference rule. In this section we consider a deterministic reference

rule. We assume that there is a (single valued) choice function c defined on the subsets of X

such that the reference rule takes the following form

πc(a,A) =

1 if a = c(A)

0 otherwise.

We interpret c as a common observed choice rule. An important example is when c is dictated

by a collection of exogenous reference/attribute orders�1, ...,�n such that c(A) is�i maximal

for some i.19 Consider for instance an online environment where alternatives can be ordered

based on attributes such as price in ascending/descending order and/or popularity. A special

19This is the choice by multiple rationales model in Kalai et al. (2002).
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case is when c is maximized by a single reference order �, i.e. c(A) = max(�, A) for all

A ∈ A. Such reference rules will be denoted by π�. As we will see in subsection 8.2 the

Random Sequential Model w.r.t. π� is closely related to the models considered in Apesteguia

et al. (2017) and Filiz-Ozbay and Masatlioglu (2022).

The following proposition shows that any stochastic choice function has a unique RSM

representation w.r.t. πc. This is perhaps a bit surprising given the irregular choice patterns

consistent with a general single valued choice rule c.

Proposition 4.4. Let πc be a deterministic reference rule. Every stochastic choice function

ρ has an RSM representation w.r.t. πc. Moreover, the representation is unique.

Proof. It is clear that πc is weakly regular. This is because if B ⊆ A and b ∈ A \ B with

πc(b, A) > 0 then πc(b, A) = 1. Hence πc(a,A) = 0 for all a ∈ B, so weak regularity vacuously

holds. �

5. Satisficing Behavior

So far we have studied RSMs without any restrictions on the choice functions in their

support. We mentioned several plausible classes of such choice functions in the introduction,

each consistent with different types of boundedly rational behavior. One prominent and

well studied type of behavior is satisficing. In satisficing a decision maker has a (random)

threshold utility and only considers alternatives with utility exceeding the threshold. A

model along these lines was first conceived in Simon (1955) and has since then attracted

wide attention in a large literature on behavioral economics and decision theory.20 In this

section we provide a characterization of a satisficing model in the spirit of Simon (1955).

Definition 5.1. A collection (Ci)i∈I is consistent with satisficing behavior if there is:

i) a common (utility) function v : X → (0,∞) and

ii) for each i ∈ I a threshold function δi : A → (0,∞)

such that for all A ∈ A and for all i ∈ I: Ci(A) = {a ∈ A : v(a) > δi(A)}. /

In words, a collection (Ci)i∈I is consistent with satisficing behavior if there is a common

utility v such that each type i only considers alternatives with utility exceeding a (possibly)

type-dependent threshold δi(A). Heterogeneity in this model is due to the individual (type

dependent) thresholds δi. I.e. types differ in their satisfaction levels but have a common

satisfaction utility v.

Our characterization result is in terms of an acyclicity condition imposed on a preference

relation revealed from stochastic choice data. We next define this relation. Fix a weakly

20See Tyson (2008), Caplin et al. (2011), Manzini et al. (2013) and Aguiar et al. (2016) for some recent
explorations.
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regular reference rule π (we impose weak regularity to ensure uniqueness of the revealed

preference relation). Let ρ be a stochastic choice function and (Cπ
i )i∈I the unique collection

of sequential choice correspondences in an RSM representation of ρ w.r.t. the reference rule

π. We define a binary relation Pπ on X by aPπb if and only if a ∈ Cπ
i (A) and b ∈ A \ Cπ

i (A)

for some i ∈ I and A ∈ A. In words, a is related to b if there is a menu A, with both a

and b available, and some type i ∈ I, such that a is chosen by type i, but b is not. Note

that aPπb reveals a strict preference for a over b, since then a ∈ Ci(A) and b ∈ A \ Ci(A)

implies v(a) > δi(A) ≥ v(b). The relation Pπ is well-defined since weak regularity of π implies

that every SCF ρ has a unique RSM representation w.r.t. π (follows by theorem 2.10 and

theorem 3.2). Our acyclicity condition is related to acyclicity conditions used to characterize

deterministic versions of the satisficing model (see e.g. Aleskerov et al. (2007), Manzini et al.

(2013) and Frick (2016)).

Proposition 5.2. Let π be a weakly regular reference rule. A stochastic choice function ρ

has a satisficing representation21 w.r.t. π if and only if Pπ is acyclic.

Proof. Assume that ρ has a satisficing representation w.r.t. π and that there are thresholds

δ1, ..., δm and a function v : X → (0,∞) such that definition 5.1 holds. We first show that Pπ

is acyclic. To show this it suffices to show that aPπb implies v(a) > v(b). Assume that aPπb.

Then there is an i ∈ I with a ∈ Ci(A) and b /∈ Ci(A) and it follows that v(a) > δi(A) ≥ v(b).

Next, we assume that Pπ is acyclic (the relation Pπ is well-defined due to weak regularity

of π). Let v : X → (0,∞) be a representation of a linear extension of Pπ, i.e. v is such

that aPπb implies v(a) > v(b). Let C1, ..., Cn be the unique sequential collection of choice

correspondences in an RSM representation of ρ as per theorem 3.2. We will show that it is

possible to define δi : A → R for each i ∈ I such that Ci(A) = {a ∈ A : v(a) > δi(A)}. Let

i ∈ I. For all A ∈ A define δi(A) = arg maxa∈A\Ci(A)
v(a). Let a ∈ A with v(a) > δi(A).

Then v(a) > δi(A) ≥ v(b) for all b ∈ A \ Ci(A) and hence it follows that a ∈ Ci(A). On the

other hand, if a ∈ Ci(A) then aPπb for all b ∈ A \Ci(A), so v(a) > v(b) for all b ∈ A \Ci(A),

which in turn implies that v(a) > δi(A). The claim follows. �

5.1. Logit satisficing. The relation Pπ is, for certain reference rules, quite cumbersome to

compute. To compute it we first need to execute the algorithm in the construction of an

RSM representation. We next study a case where the relation Pπ takes a particularly simple

form, namely when π belongs to the class of logit functions. If the reference rule π has a

logit representation with utility function u : X → (0,∞) then we may define a relation Pu

by aPub if and only if ρ(a,A)u(b) > ρ(b, A)u(a) for some A ⊇ {a, b}. The next proposition

21In the sequel, we will say that a stochastic choice function ρ has a satisficing representation w.r.t. a
reference rule π, if ρ has an RSM representation w.r.t. π and if the collection (Ci)i∈I in the representation
is consistent with satisficing behavior.
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shows that acyclicity of Pπ is equivalent to acyclicity of Pu which in turn is equivalent to a

satisficing represenation of ρ (with a logit reference rule).

Proposition 5.3. An SCF ρ has a satisficing representation w.r.t. a logit reference rule

(with utility u : X → (0,∞)) if and only if Pu is acyclic.

The intuition behind proposition 5.3 is simple. The standard Luce/logit model is char-

acterized by independence of irrelevant alternatives (IIA) requiring that ρ(a,A)
ρ(b,A)

= u(a)
u(b)

for all

a, b ∈ A and for all menus A ⊆ X. Our acyclicity condition is based on the idea that an IIA

violation at a, b, meaning that ρ(a,A)
ρ(b,A)

> u(a)
u(b)

, reveals that a is a more satisfying alternative

than b (i.e. that v(a) > v(b)). Hence we require acyclicity of this relation.

Proof. It suffices to show that for all a, b ∈ X: aPub if and only if aPπb. If aPub then

ρ(a,A)u(b) > ρ(b, A)u(a) for some A ⊇ {a, b}. Assume, by contradiction, that for all i ∈ I:

a ∈ Ci(A) implies b ∈ Ci(A). Then 1{a∈Ci(A)}∑
c∈Ci(A) u(c)

≤ 1{b∈Ci(A)}∑
c∈Ci(A) u(c)

for all i ∈ I, which in turn

implies that

ρ(a,A)u(b) =
∑
i∈I

µi
u(a)1{a ∈ Ci(A)}∑

c∈Ci(A)
u(c)

u(b) = u(a)u(b)
∑
i∈I

µi
1{a ∈ Ci(A)}∑

c∈Ci(A)
u(c)

≤

≤ u(a)u(b)
∑
i∈I

µi
1{b ∈ Ci(A)}∑

c∈Ci(A)
u(c)

=
∑
i∈I

µi
u(b)1{b ∈ Ci(A)}∑

c∈Ci(A)
u(c)

u(a) = ρ(b, A)u(a).

This is a contradiction. It thus follows that there is an i ∈ I with a ∈ Cπ
i (A) and b ∈

A \ Cπ
i (A). Hence aPπb. Conversely, assume that aPπb. Since π is positive there is an index

i(a) such that a ∈ Cπ
i (A) if and only if i ≤ i(a) and an index i(b) such that b ∈ Cπ

i (A) if and

only if i ≤ i(b). Further, i(a) > i(b). Hence

ρ(a,A)u(b) =
∑
i∈I

µi
u(a)1{a ∈ Ci(A)}∑

c∈Ci(A)
u(c)

u(b) = u(a)u(b)
∑
i≤i(a)

µi
1∑

c∈Ci(A)
u(c)

>

> u(a)u(b)
∑
i≤i(b)

µi
1∑

c∈Ci(A)
u(c)

=
∑
i∈I

µi
u(b)1{b ∈ Ci(A)}∑

c∈Ci(A)
u(c)

u(a) = ρ(b, A)u(a).

The claim follows. �

Of some independent interest is perhaps the case where the reference rule takes the form

of a uniform rule. This corresponds to a special case of the logit rule where the logit utilities

of all alternatives are equal. To characterize it, define a relation P by aPb if and only if

ρ(a,A) > ρ(b, A).

Corollary 5.4. A stochastic choice function ρ has a satisficing representation w.r.t. a uni-

form tie-breaking rule if and only if P is acyclic.

Proof. Let u : X → (0,∞) be such that u(a) = u(b) for all a, b ∈ X. Then for all a, b ∈ X:

aPub if and only if aPb. Hence Pu is acyclic and it follows by proposition 5.3 that ρ has a
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satisficing representation w.r.t. u : X → (0,∞). But since u(a)∑
b∈Ci(A) u(b)

= 1
|Ci(A)| for all i ∈ I,

it follows that ρ has a satisficing representation with uniform tie breaking. The converse is

immediate. �

6. Dynamic choice

Our model may be tailored to study dynamic choice. In line with a large literature on

social learning, we assume that individuals use information on past periods’ choices to inform

current decisions. In this setting we assume that the outside observer/analyst observes a

sequence or time series of stochastic choices. We call a sequence (ρt)
∞
t=0, where each ρt is a

stochastic choice function, a dynamic stochastic choice function.

Definition 6.1. A dynamic stochastic choice function (ρt)
∞
t=0 is governed by a Dynamic

Random Sequential Model (DRSM) if there for each t ∈ N is a finite set I(t) = {1, ..., n(t)},
a collection of sequential choice correspondences Ct = (Ct

i )i∈I(t), and a probability measure

µt on Ct such that

(2) ρt(a,A) =
∑
i∈I(t)

µtiρt−1(a, C
t
i (A))

for all a ∈ A and A ∈ A. /

An interpretation of the model is as follows. There is a population of agents I(t) whose

deterministic choices are described by choice correspondences Ct
i in period t. These agents

may deem several alternatives as choosable in A since Ct
i (A) is not necessarily singleton. The

model assumes that each agent resolves any ambiguity, due to non singleton Ct
i (A), by using

information on past period’s choices ρt−1. I.e. past choices ρt−1 are used as a reference for

today’s choices ρt. The following proposition is a direct corollary to theorem 2.10.

Corollary 6.2. Every dynamic stochastic choice function (ρt)
∞
t=0 has a DRSM representation.

Proof. The result follows by applying theorem 2.10 to each pair (ρt, ρt+1). I.e. let ρt be the

reference rule in theorem 2.10. �

Moreover, if each ρt is weakly regular, then it is possible to uniquely recover the parameters

of the DRSM by using dynamic stochastic choices. This follows as a direct corollary to

theorem 3.4.

Corollary 6.3. Assume that ρt is weakly regular for all t ≥ 0. Then (ρt)
∞
t=0 has a unique

DRSM representation.

6.1. Long run behavior. The model above can be used to study long run behavior of

individuals. However, without any further assumptions imposed on the model, the long run

behavior may be very erratic. This is because any dynamic stochastic choice function has a
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DRSM representation, so any type of long run behavior is consistent with the model. In this

section we will therefore assume that there is a fixed population of agents who update their

choices using information on past choices as in equation (2). More formally, we will assume

that there is a population of individuals, consisting of n different types I = {1, ..., n}, and

that the fraction of each type in the population is constant (time-invariant) and equals µi.

We assume that each individual uses a correspondence Ci to narrow down choices, and then

uses information on past choices to choose among considered options Ci(A) in A, i.e. for each

period t aggregate choices satisfy ρt(a,A) =
∑

i∈I µiρt−1(a, Ci(A)) for all a ∈ A and A ∈ A.

This is the same equation as in (2) except that we have dropped the time superscripts on µ

and the C ′is due to the assumption of a fixed/constant population. We will impose one final

assumption, and this is idempotence:

Definition 6.4. A collection of choice correspondences (Ci)i∈I is idempotent if Cj ◦Ci(A) =

Ci ◦ Cj(A) = Cj(A) for all types i, j ∈ I with i ≤ j. /

Idempotence is a quite weak assumption and is satisfied by a range of different models.

Examples of models that satisfy this assumption are the shades of indecisiveness model, the

multiple rationales model and the checklist model introduced in example 2.6 - 2.9. Another

example is the satisficing model in section 5 with menu independent thresholds, i.e. threshold

functions δi : A → R such that δi(A) = δi for all A ∈ A. The following lemma, whose proof

is in the Appendix, proves that these models are idempotent.

Lemma 6.5. Let (C)i∈I have a shades of indecisiveness representation, a multiple rationales

representation, a checklist representation or an independent satisficing representation. Then

(Ci)i∈I is idempotent.

We will next study the long run behavior of individuals. Suppose that each individual

uses information on past choices to inform current choice, i.e. their choices are in line with

the model described above. Will long run behavior converge? And, if so, what will long

run behavior converge to? For instance, will individuals be better off in the long run? The

following proposition provides a partial answer to these questions and shows that idempotence

is a sufficient condition for convergence of long run behavior.

Proposition 6.6. Let (Ci)i∈I be an idempotent collection of choice functions. The long run

choice distribution converges to the initial distribution of the highest type, i.e. for all a ∈ A
and A ∈ A :

lim
t→∞

ρt(a,A) = ρ0(a, Cn(A)).

In the context of the shades of indecisiveness model proposition 6.6 says that the long run

behavior converges to the initial distribution of the least indecisive type. Suppose that there is

a non-negliable probability that all indecisiveness is resolved, i.e. that choice correspondence
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Cn maximizes a linear preference, then by proposition 6.6 long run behavior will converge

to deterministic preference/utility maximization. This provides a testable hypothesis of the

model and suggests that long run behavior gets less heterogeneous (individual behaviors more

aligned with each other) as time increases.

The intuition behind proposition 6.6 is quite simple. To explain it, consider a special

case with two types, high (H) and low (L), where each type uses a satisficing procedure

CH(A) = {a ∈ A : u(a) > δH} and CL(A) = {a ∈ A : u(a) > δL} and where δH > δL. High

and low types will look at prior periods choices to inform current choice. I.e. they will consider

alternatives in CL(A) (CH(A)) and use prior periods’ choices ρ1 to break ties. In particular,

the choice probability of a ∈ A in period 2 is ρ2(a,A) = µLρ1(a, CL(A)) + µHρ1(a, CH(A)).

Expanding and using the idempotence assumption we can express this probability as:

ρ2(a,A) = µ2
Lρ0(a, CL(A)) + (1− µ2

L)ρ0(a, CH(A))

In particular, low types will inevitably put larger probability on alternatives with satisfac-

tion level exceeding δH and are hence indistinguishable from high types (this is because they

will observe high types choosing such alternatives in the previous period). In contrast, high

types will keep choosing alternatives above their satisfaction threshold δH . In rough terms,

each period probability will thus be ”shifted” from outside CL(A)\CH(A) to CH(A), while no

probability will ”escape” from CH(A). Thus, in the long run, a gradually higher probability

mass will be put on CH such that in the limit all mass will be on CH . By induction/iteration,

one can show that

ρn(a,A) = µnLρ0(a, CL(A)) + (1− µnL)ρ0(a, CH(A)),

implying the statement for the case of two types (since µL < 1 implies that µnL → 0 as

n → ∞). The proof of the general n type case follows a similar logic, but relies on the

(global) convergence of a simple first order linear difference equation. See appendix A.4 for

further details.

7. General progressive choice model

In this section we apply our framework to study extensions of the single-crossing random

utility model (SCRUM) in Apesteguia et al. (2017) and the progressive random choice model

in Filiz-Ozbay and Masatlioglu (2022). Both of these papers consider representations w.r.t.

an exogenous linear reference order �. We extend their results to allow arbitrary exogenous

choice functions. Examples of such reference rules were provided in subsection 4.3. An

archetypical example being online environments where alternatives can be ordered based on

a set of different criteria, such as price in ascending or descending order. Let C denote the

set of all (single valued) choice functions.
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Definition 7.1. A collection of choice functions C ⊆ C is progressive w.r.t. an exogenous

choice function c if C can be ordered {c1, ..., cn} such that c({ci(A), ..., cn(A)}) = ci(A) for

all i ∈ {1, ..., n}. /

A stochastic choice function has a progressive random choice representation w.r.t. c if there

is a measure µ on C such that the support of µ is progressive w.r.t. c and ρ(a,A) = µ(C(a,A))

for all a ∈ A and A ∈ A, where C(a,A) = {c ∈ C : c(A) = a}.

Proposition 7.2. Every stochastic choice function ρ has a progressive representation w.r.t.

c. Moreover, the representation is unique.

The proof of proposition 7.2 is provided in appendix A.5. The proof that every ρ has a

progressive representation w.r.t. c is straightforward and follows by adapting the algorithm in

the proof of theorem 2.10 or by using a similar algorithmic construction as in Filiz-Ozbay and

Masatlioglu (2022). Uniqueness does not follow from the proof in Filiz-Ozbay and Masatlioglu

(2022). Note, however, that corollary 4.4 implies that any RSM representation w.r.t. πc is

unique. Given a PRC representation of ρ with support c1, ..., cn and type distribution µ

define a sequential collection of choice correspondences (Ci)i∈I by Ci(A) = ∪nj=icj(A). One

can then show that ρ has an RSM representation (w.r.t. πc) using this collection of choice

correspondences and the same type distribution µ. Uniqueness of the PRC representation

then follows by corollary 4.4.

Proposition 7.2 suggests an extension of the single-crossing random utility model to a

setting with an arbitrary exogenous choice function. However, the following result shows

that there are limits to how far this result can be extended.

Proposition 7.3. Let ρ be a positive stochastic choice function and c a choice function. If

ρ is progressive w.r.t. c and the type distribution µ has support consisting of rational choice

functions then there is a linear order � s.t. c(A) = max(A,�) for all A ∈ A.

Proof. Since c is single valued, it suffices to show that c satisfies Sen’s α (for a proof see (Sen,

1971, proposition T.6,p. 313)) , i.e. if a ∈ B ⊆ A and a = c(A) then a = c(B). Let a = c(A)

then a = c(c1(A), ..., cn(A)) = c1(A) (due to the full support assumption). But since c1 is

rational and a = c1(A) it follows that a = c1(B). Hence c(B) = c(c1(B), ..., cn(B)) = c1(B) =

a. �

8. Discussion

We first discuss a sufficient condition under which both the reference rule and underlying

type distribution are revealed by choice data. We then provide a more in depth discussion

of the relation to Apesteguia et al. (2017) and Filiz-Ozbay and Masatlioglu (2022).
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8.1. Identification of reference rule and type distribution. In order to achieve iden-

tification of the underlying type distribution we assume observability of the reference rule

π. Although a plausible assumption, there are instances where π may not be directly ob-

served by the researcher, such as when it corresponds to a decision rule/preference. We will

next discuss a sufficient condition for identification of both the reference rule π and the type

distribution µ in the context of the examples of reference rules discussed in section 4.

Definition 8.1. A collection of choice correspondences (Ci)i∈I is called binary if Ci({x, y}) =

{x, y} for all x, y ∈ X and for all i ∈ I. /

This assumption implies that each type considers both alternatives in each binary menu. If

we interpret the choice correspondence Ci as the cognitive bounds of type i, this assumption

means that individuals are the least cognitively constrained in binary menus (which are the

non singleton menus of smallest cardinality).22 This, arguably, makes sense due to the fewer

number of alternatives in such sets.

Proposition 8.2. Let ρ be a positive stochastic choice function. If ρ has a binary RSM

representation w.r.t. a dual random reference order then the parameters of ρ are unique.

Proof. Since ρ is positive when restricted to binary subsets and ρ is a binary RSM it follows

that ρ(x, xy) = π(x, xy) for all x, y ∈ X. Thus it suffices to show that if π is positive on

binary subsets then it is represented by a unique dual random reference order. The proof is

straightforward (albeit a bit tedious) and available from the author upon request. �

Our next example is when π is a logit rule. Then we can interpret an RSM rule ρ as a rule

where each type considers a set of alternatives Ci(A) and then chooses final alternatives with

probability proportional to a common utility u. If we assume that ρ satisfies a positivity

constraint, we recover ”full” identification of the parameters of the model.

Proposition 8.3. Let ρ be a positive stochastic choice function. If ρ has a binary RSM

representation w.r.t. a logit reference rule π then the parameters of ρ are unique.23

Proof. Suppose that ρ is represented by possibly different parameter triples 〈(Ci)i∈I , µ, u〉
and 〈(C ′i)i∈I , µ′, u′〉. By binariness it follows that Ci({a, b}) = {a, b} = C ′i({a, b}) for all

i ∈ I and hence we have that u(a)
u(a)+u(b)

= ρ(a, ab) = u′(a)
u′(a)+u′(b)

. Thus, by uniqueness of the

Luce/logit model when restricted to binary subsets it follows that u = βu′ for some β > 0.

The uniqueness of (Ci)i∈I , µ then follows by theorem 3.2. �

22A similar condition is used in a characterization of the focal Luce model in Kovach and Tserenjigmid (2020).
23In particular, the utility function u is unique up to an affine transformation. See proof for details.
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8.2. Relation to progressive random choice and single-crossing choice. This section

discusses further relationships to Apesteguia et al. (2017) and Filiz-Ozbay and Masatlioglu

(2022). As mentioned before, our framework may be viewed as an extension of both of these

works, allowing random reference rules. I.e. their models are ”isomorphic” to a special case

of RSM with a reference rule induced by a strict reference order.

To show that the progressive random choice model (and hence the single-crossing random

utility model) is isomorphic to a special case of our model. Recall from subsection 4.3 that

the reference rule π� is defined as follows:

π�(a,A) =

1 if a = min(�, A)

0 otherwise.

Our next proposition, shows that an RSM representation w.r.t. this reference rule is closely

related to progressiveness in Filiz-Ozbay and Masatlioglu (2022).

Proposition 8.4. A stochastic choice function ρ has an RSM representation with type dis-

tribution µ and sequential collection (Ci)i∈I w.r.t. reference rule π� if and only if it has a

PRC representation w.r.t. � with the same type distribution µ and with support (ci)i∈I such

that ci(A) = min(�, Ci(A)).

Proof. Let ρ be a stochastic choice function. Suppose that µ and (Ck)
n
k=1 are the pa-

rameters of an RSM representation of ρ w.r.t. the reference rule π�. Then ρ(a,A) =∑
i∈I µiπ�(a, Ci(A)) =

∑
i∈I µi1{a = min(�, Ci(A))}. For all i ∈ I define ci(A) = min(�

, Ci(A)) for all A ∈ A. Then, since C1(A) ⊇ ... ⊇ Cm(A) it follows that c1(A) - .... - cm(A).

Further, ρ(a,A) = µ(C(a,A)) so ρ has a progressive representation with support {c′1, ..., c′m}.
By theorem 1 in Filiz-Ozbay and Masatlioglu (2022) ρ has a unique progressive representation

w.r.t. � and the proposition follows. �

The model in Filiz-Ozbay and Masatlioglu (2022) enjoys high explanatory power in that

any stochastic choice function can be represented by the PRC model. Ultimately, however,

the PRC model is a model of single valued choice (as it posits a probability distribution on

single valued choices). Some multivalued behaviors are therefore (and arguably) not that

well-explained within the PRC framework. As an example consider a decision maker who

has a weak order % on alternatives but where the indifference classes of ρ are stochastic.

This is a special case of the shades of indecisiveness model discussed in example 2.8, where

each %i in the representation is a weak order (and with uniform tie-breaking).
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Definition 8.5. A stochastic choice function ρ has a shades of indifference representation if

there is a collection of preferences %1, ...,%n such that a �i b implies a �j b for all i < j and

ρ(a,A) =
∑
i∈I

µi
1{a ∈ max(%i, A))}
|max(%i, A)|

,

for all a ∈ A and A ∈ A. /

It is straightforward to show that the model above is a random utility model and hence

consistent with population rationality.24 However, as the next result shows there is no refer-

ence order � such that the behavior of this model is described by a SCRUM. In particular,

since every stochastic choice function can be explained by the PRC model, this implies that

a PRC representation of this behavior has to assign positive probability to a ”non-rational”

choice function.

Proposition 8.6. Let ρ have a shades of indifference representation (with an indifference

class of at least three alternatives).25 Then there is no reference order � such that ρ is a

SCRUM w.r.t. �.

Proof. Let � be a reference order and suppose that ρ is SCRUM w.r.t. �. Consider a

set {a, b, c} of three elements such that a ∼1 b ∼1 c. W.l.o.g. assume that a � b � c

(the other cases are symmetric). Since ρ is a SCRUM and ρ(b, {a, b, c}) > 0 it follows

that ρ(a, {a, b, c}) = ρ(a, {a, b}). But, note that 1
|max(%1,{a,b,c})| = 1

3
< 1

2
= 1
|max(%1,{a,b})| .

Hence, it follows that ρ(a, {a, b, c}) =
∑

i∈I µi
1{a∈max(�i,{a,b,c})}
|max(%i,{a,b,c})| <

∑
i∈I µi

1{a∈max(�i,{a,b})}
|max(%i,{a,b})| =

ρ(a, {a, b}). This is a contradiction to the centrality axiom characterizing SCRUM (see

Apesteguia et al. (2017)). �

Appendix A. Proofs omitted from main text

A.1. Proof of theorem 2.10. It will be convenient to allow division by zero in the proof

below. We will use the convention that x
0

=∞ for all positive real numbers x.

Proof. Let ρ : X ×A 7→ [0, 1] be a stochastic choice function and π a reference rule. We will

find an RSM representation of ρ by using a recursive construction.

STEP 1: Let ρ̂1 = ρ. For each A ∈ A define a correspondence C1 by setting C1(A) = {a ∈
A : ρ̂1(a,A) > 0}. Set

µ(C1) = min
A∈A

min
a∈C1(A)

ρ̂1(a,A)

π(a, C1(A))

Note that µ(C1) <∞, since for all A ∈ A we have π(a, C1(A)) > 0 for some a ∈ A.

24A proof is available from the author upon request.
25If all indifference classes of %1 are less than or equal to two, then one can show that ρ is indeed a SCRUM.
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STEP 2: Define a function ρ̂2 : X ×A 7→ [0, 1] by setting

(3) ρ̂2(a,A) =

ρ̂1(a,A)− µ(C1)π(a, C1(A)) if a ∈ C1(A)

ρ̂1(a,A) otherwise

Set C2(A) = {a ∈ A : ρ̂2(a,A) > 0}. If C2(A) 6= ∅ for some A ∈ A set

µ(C2) = min
A∈A

min
a∈C2(A)

ρ̂2(a,A)

π(a, C2(A))
,

(note that µ(C2) <∞ by similar reasoning as above) and continue to next step. Otherwise,

stop. Assume that Ci, µ(Ci) and ρ̂i for all i ≤ k has already been defined.

STEP k + 1: Define a function ρ̂k+1 : X ×A 7→ [0, 1] by setting

(4) ρ̂k+1(a,A) =

ρ̂k(a,A)− µ(Ck)π(a, Ck(A)) if a ∈ Ck(A)

ρ̂k(a,A) otherwise

Note that ρ̂k+1(a,A) ≥ 0, since ρ̂k(a,A)
π(a,Ck(A))

≥ µ(Ck) for all A ∈ A by equation (5). Set

Ck+1(A) = {a ∈ A : ρ̂k+1(a,A) > 0} for all A ∈ A. If Ck+1(A) 6= ∅ for some A ∈ A, set

(5) µ(Ck+1) = min
A∈A

min
a∈Ck+1(A)

ρ̂k+1(a,A)

π(a, Ck+1(A))

and note that µ(Ck+1) <∞ and continue to next step. Otherwise, i.e. if Ck+1(A) = ∅ for all

A ∈ A, stop.

We will first show that the algorithm above stops, i.e. that there is a smallest number k ∈ N
such that Ck(A) = ∅ for all A ∈ A. But this follows since the universal set X is finite and

since Ck+1(A) ⊆ Ck(A) for all A ∈ A and Ck+1(B) ⊂ Ck(B) for some B ∈ A.

We next show that the algorithm above indeed gives an RSM representation of ρ. Let

µ1, ..., µm and C1, ..., Cm be obtained from the algorithm where m + 1 is the step at which

the algorithm stops.

We first show that the C1, ..., Cm are non-empty valued choice correspondences. I.e. that

Ci(A) 6= ∅ for all A ∈ A and i ∈ {1, ...,m}. Let k ∈ {1, ...m}. By construction (of the

algorithm) we know that Ck(A) 6= ∅ for some A ∈ A (otherwise we would have a contradiction

to m+ 1 being the smallest number at which the algorithm stops).

To show that Ck(A) 6= ∅ for all A ∈ A, it suffices to note that for all A ∈ A:



27

∑
a∈A

ρ̂m(a,A) =
∑

a∈A\Cm(A)

ρ̂m(a,A) +
∑

a∈Cm(A)

ρ̂m(a,A) =

=
∑

a∈A\Cm(A)

ρ̂m−1(a,A) +
∑

a∈Cm(A)

(ρ̂m−1(a,A)− µ(Cm)π(a, Cm(A))) =

=
∑
a∈A

ρ̂m−1(a,A)− µ(Cm) = ... =
∑
a∈A

ρ(a,A)−
∑

i∈{1,...,m}

µ(Ci) =

= 1−
∑

i∈{1,...,m}

µ(Cm) = ... =
∑
b∈B

ρ̂m(b, B).

By the equalities established above it then follows that if Cm(A) 6= ∅ and Cm(B) = ∅ for

some B ∈ A, then
∑

a∈A ρ̂m(a,A) > 0 =
∑

b∈B ρ̂m(b, B) = 0. A contradiction.

We next show that µ is indeed a probability measure. To show this, it suffices to show that∑
i∈I µ(Ci) = 1 and that µ is positive, i.e. that µ(Ci) ≥ 0 for all i ∈ I. Positivity of µ

follows by equation (5) and since ρ̂k(a,A) ≥ 0 for all k ≥ 1. To see that probabilities sum

to one, note that it follows by the recursion in equation (4) that ρ̂k+1(a, {a}) = ρ̂k(a, {a})−
µ(Ck+1)π(a, Ck+1({a})) = ρ̂k(a, {a})− µ(Ck+1) for all k ≥ 1. Using this it then follows that

m∑
i=1

µ(Ci) = µ(C1) + ...+ µ(Cn) =

= (ρ(a, {a})− ρ̂1(a, {a})) + ...+ (ρ̂m−1(a, {a})− ρ̂m(a, {a})) = ρ(a, {a}) = 1.

Thus µ is a probability measure on C.

We finally show that the defining formula (1) for an RSM holds, i.e. that

ρ(a,A) =
∑
i∈I

µiπ(a, Ci(A))

for all a ∈ A and A ∈ A.

Let a ∈ A and A ∈ A with ρ(a,A) > 0. By reasoning above there is a smallest k such that

a /∈ Ck+1(A) and note that ρ̂k(a,A) = µ(Ck)π(a, Ck(A)) for this k. It hence follows that∑
i∈I

µiπ(a, Ci(A)) =
k∑
i=1

µ(Ci)π(a, Ci(A)) = µ(Ck)π(a, Ck(A)) +
k−1∑
i=1

µ(Ci)π(a, Ci(A)) =

= ρ̂k(a,A) +
k−1∑
i=1

(ρ̂i(a,A)− ρ̂i+1(a,A)) = ρ̂1(a,A) = ρ(a,A).

Finally, if ρ(a,A) = 0 then a /∈ {a ∈ A : ρ(a,A) > 0} = C1(A) and since Ci(A) ⊆ C1(A) it

follows that a /∈ Ci(A) for any i ≥ 1 implying that
∑

i∈I µiπ(a, Ci(A)) = 0. �
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A.2. Proof of theorem 3.4.

Proof. We fist show that (1) implies (2). Assume that π satisfies weak regularity. Let ρ be

an SCF. We will show that ρ has a unique RSM representation. Assume that ρ(a,A) =∑
i∈I µiπ(a, Ci(A)) and Ci(A) ⊆ {a ∈ A : ρ(a,A) > 0} for all A ∈ A, where (Ci)i∈I is a

sequential collection of choice correspondences.

STEP 1: We first show that π(a, Ck(A)) > 0 for all a ∈ Ck(A) \ Ck+1(A) for all k ≥ 1 with

Ck(A) 6= Ck+1(A).

As base case, we show that π(a, C1(A)) > 0 for all a ∈ C1(A) \ C2(A) with C1(A) 6= C2(A).

Let a ∈ C1(A) \ C2(A). If π(a, C1(A)) = 0 then ρ(a,A) = 0. A contradiction. As induction

hypothesis, assume that π(a, Ck(A)) > 0 for all a ∈ Ck(A) \ Ck+1(A) with Ck(A) 6= Ck+1(A)

for all k < m. Let a ∈ Cm(A) \ Cm+1(A). Assume, by contradiction, that π(a, Cm(A)) = 0.

If π(a, Ci(A)) = 0 for all i < m then ρ(a,A) = 0. A contradiction. Hence π(a, Ci(A)) > 0 for

some i < m where Ci(A) 6= Ci+1(A). By induction hypothesis it follows that π(b, Ci(A)) > 0

for all b ∈ Ci(A) \ Ci+1(A). Since π(a, Ci(A)) > 0 it follows that π(a, Ci(A)) > 0 and since

π satisfies weak regularity it follows that π(a, Cm(A)) > 0. As we wanted to show.

STEP 2: This step entails showing uniqueness of the representation.

Assume that ρ has two RSM representations with parameters µ, (Ci)i∈I and µ′, (C ′i)i∈I′ . We

first note that C1(A) = {a ∈ A : ρ(a,A) > 0} = C ′1(A). By assumption it holds that

C1(A) ⊆ {a ∈ A : ρ(a,A) > 0} and clearly if ρ(a,A) > 0 then a ∈ C1(A) (since otherwise

a /∈ Ci(A) for all i ≥ 1, a contradiction). Next, we show that

µ1 = min
A∈A

min
a∈C1(A)

ρ(a,A)

π(a, C1(A))
.

To see this, note that µ1 ≤ ρ(a,A)
π(a,C1(A))

for all a ∈ A and A ∈ A. Further, since C1(A) 6=
C2(A) for some A ∈ A there is an a ∈ C1(A) \ Ci(A) for all i > 1. Hence, it follows that

π(a, Cj(A)) = 0 for all j > 1 and we have ρ(a,A) = µ1π(a, C1(A)). As induction hypothesis,

assume that µi = µ′i and Ci = C ′i for all i ≤ k. We divide the proof that the statement holds

for step k + 1 into two cases:

Case 1: We show that Ck+1 = C ′k+1. Assume not, then there is an A ∈ A with Ck+1(A) 6=
C ′k+1(A). Assume w.l.o.g. that there is an a ∈ Ck+1(A) \ C ′k+1(A) (the other case being

symmetric). First, note that π(a, C ′i(A)) > 0 for some i < k+ 1. If not, then π(a, C ′i(A)) = 0

for all i < k + 1 and a /∈ C ′j(A) for all j ≥ k + 1 implies that ρ(a,A) = 0. By induc-

tion hypothesis Ci = C ′i and thus it follows that π(a, Ci(A)) > 0 for some i ≤ k + 1. Let
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i∗ ≤ k+1 be the largest index with π(a, Ci∗(A)) > 0. We claim that i∗ = k+1. Assume that

i∗ < k+ 1 (otherwise π(a, Ck+1(A)) = π(a, Ci∗(A)) > 0 and we are done). Further, note that

Ci∗(A) 6= Ci∗+1(A) since otherwise π(a, Ci∗(A)) > 0 implies π(a, Ci∗+1(A)) = π(a, Ci∗(A)) >

0, contradicting the maximality of i∗. By STEP 1 above it follows that π(b, Ci∗(A)) > 0

for all b ∈ Ci∗(A) \ Ci∗+1(A) and since π(a, Ci∗(A)) > 0 and π is weakly regular it fol-

lows that π(a, Ci∗+1(A)) > 0 and hence π(a, Ci∗+1(A)) > 0. A contradiction again. Thus

π(a, Ck+1(A)) > 0. It follows that ρ(a,A)−
∑k

i=1 µiπ(a, Ci(A)) ≥ µk+1π(a, Ck+1(A)) > 0 and

using the induction hypothesis we have that ρ(a,A) −
∑k

i=1 µ
′
iπ(a, C ′i(A)) > 0. But, since

a /∈ C ′j(A) for all j ≥ k+ 1, we must have ρ(a,A)−
∑k

i=1 µ
′
iπ(a, C ′i(A)) ≤ 0. A contradiction.

Case 2: We next have to show that

µk+1 = min
A∈A

min
a∈Ck+1(A)

ρ(a,A)−
∑k

i=1 µiπ(a, Ci(A))

π(a, Ck+1(A))
.

There are two subcases:

Case 2a: If k + 1 = n then clearly µnπ(a, Cn(A)) = ρ(a,A) −
∑n−1

i=1 µiπ(a, Ci(A)) and the

claim follows.

Case 2b: If k+ 1 < n then it is clear that µk+1π(a, Ck+1(A)) ≤ ρ(a,A)−
∑k

i=1 µiπ(a, Ci(A))

for all a ∈ A and A ∈ A. Further, since Ck+1(A) 6= Ck+2(A) for some A ∈ A, there is an

a ∈ A with a ∈ Ck+1(A) \ Cj(A) for all j > k + 1. Further, since a ∈ Ck+1(A) \ Ck+2(A)

it follows by STEP 1 that π(a, Ck+1(A)) > 0. Since π(a, Ck+1(A)) > 0 we have ρ(a,A) =∑k
i=1 µiπ(a, Ci(A)) + µk+1π(a, Ck+1(A)), so µk+1 =

ρ(a,A)−
∑k

i=1 µiπ(a,Ci(A))

π(a,Ck+1(A))
. This finishes the

proof of the theorem.

We next show that (2) implies (1). Suppose that π fails to satisfy weak regularity. Then

there are A,B ⊆ X with π(b, A) > 0 for all b ∈ A \ B such that a ∈ B ⊂ A but π(a,A) > 0

and π(a,B) = 0. Since X ∈ A, let ρ be a stochastic choice function such that ρ(a,X) > 0 if

and only if a ∈ A. More specifically, define ρ s.t. ρ(a,X)
π(a,A)

= ρ(b,X)
π(b,A)

< ρ(c,X)
π(c,A)

for all c ∈ B \ {a}
and b ∈ A \ B. To obtain two distinct representations of ρ, carry out the algorithm used

to prove theorem 2.10 to obtain an RSM representation C1, ..., Ck, Ck+1, ..., Cn. Next, carry

out the algorithm until the first step k where Ck+1(X) 6= C1(X) and note that we have

Ck+1(X) = B \ {a}. Instead of continuing with Ck+1 define C ′k+1(X) = B at step k + 1

(this is possible since π(a,B) = 0) and then continue the algorithm as before to obtain an

RSM representation with C1, ..., Ck, C
′
k+1, ..., C

′
m. Since C ′k+1 6= Ck+1 we have two distinct

representations. This finishes the proof that (2) implies (1). �
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Since regularity implies weak regularity theorem 3.2 follows as a direct corollary to theorem

3.4.

A.3. Proof of lemma 6.5.

Proof. Satisficing with menu independent thresholds: Idempotence is straightforward. Let

i < j. Then Cj(Ci(A)) = {a ∈ Ci(A) : u(a) > δj} = {a ∈ A : u(a) > δj} = Cj(A), where

the second equality follows since δj > δi. Similarly, it follows that Ci(Cj(A)) = {a ∈ Cj(A) :

u(a) > δi} = {a ∈ A : u(a) > δj} = Cj(A).

Shades of indecisiveness: So suppose that (Ci)i∈I has a shades of indecisiveness represen-

tation. I.e. the collection (Ci)i∈I satisfies Ck(A) = {x ∈ A : y �k x for no y ∈ A} for

all A ∈ A, where %1, ...,%I on X are such that for each k, l ∈ {1, ..., |I||} with k < l

we have that a �k b implies that a �l b. We prove idempotence. Let i < j. Then

Ci(Cj(A)) = {x ∈ Cj(A) : y �i x for no y ∈ Cj(A)} ⊆ Cj(A). Assume that x ∈ Cj(A)

and that y �i x for some y ∈ Cj(A). Then y �i x implies y �j x, which yields a contra-

diction to x ∈ Cj(A). We next show that Cj(Ci(A)) = Cj(A). Let x ∈ Cj(A) then y �j x
for no y ∈ A. Hence y �j x for no y ∈ Ci(A), so Cj(A) ⊆ Cj(Ci(A)). Conversley, assume

that x /∈ Cj(A) then y �j x for some y ∈ A. We claim that z �j x for some z ∈ Cj(A). If

y ∈ Cj(A) we are done. Otherwise, there is an y′ �j y and since y �j x we have y′ �j x. If

y′ ∈ Cj(A) we are done again. If not, continue as before. Since A is finite the claim follows.

But since z �j x and z ∈ Cj(A) ⊆ Ci(A) it follows that x /∈ Cj(Ci(A)). As we wanted to

show.

Multiple rationales: We show that the sequential multiple rationales model is idempotent.

Let �1, ...,�n be a collection of preferences. We first show that Cj ◦Ci = Ci where i < j and

Cj(A) =
⋃
k∈I(j) max(A,�k) and Ci(A) =

⋃
k∈I(i) max(A,�k) and I(j) ⊆ I(i). If x ∈ Cj(A)

then there is a k ∈ I(j) with x �k y for all y ∈ A. Since k ∈ I(j) ⊆ I(i) and x �k y for all

y ∈ Ci(A), we have that x ∈ Cj(Ci(A)). Conversely, if x /∈ Cj(A) then for each k ∈ I(j) we

have yk = max(A,�k) �k x. Since yk ∈ Cj(A) ⊆ Ci(A), this implies that x /∈ Cj(Ci(A)).

We next show that Ci ◦ Cj = Cj. Clearly Ci(Cj(A)) ⊆ Cj(A) since by construction

Ci(A) ⊆ A for all A ∈ A. Let x ∈ Cj(A) then there is a k ∈ I(j) with x �k y for all y ∈ A.

Since k ∈ I(j) ⊆ I(i) and x �k y for all y ∈ Cj(A), it follows that x ∈ Ci(Cj(A)).

Checklist user: This model is a special case of the shades of indecisiveness model. Indeed,

as shown in Mandler et al. (2012) a checklist user acts as if maximizing a weak order on

alternatives. Idempotence thus follows from idempotence of the shades of indecisiveness

model. �
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A.4. Proof of proposition 6.6. The following lemma on the convergence of a first order

linear difference equation is used in the proof of proposition 6.6.

Lemma A.1. Let x0 ∈ R and let (xt)
∞
t=1 and (bt)

∞
t=0 be sequences such that xt+1 = axt + bt

and |bt| < 1 for all t ≥ 0 and a < 1. Then (xt)
∞
t=0 is convergent.

Proof. Using an induction argument it is straightforward to show that

xt = atx0 +
t∑

k=0

bka
t−k−2.

First note that |
∑t

k=0 bka
t−k−2| ≤

∑t
k=0 a

t−k−2 ≤
∑∞

k=0 a
t−k−2. Since each term of the series∑t

k=0 bka
t−k−2 is non negative and bounded by the real number

∑∞
k=0 a

t−k−2 it follows that

the series is convergent. Clearly, the sequence atx0 is also convergent. Thus, since xt is the

sum of two convergent series it follows that xt is convergent. �

We are now ready to present our proof of proposition 6.6.

Proof. Define µi(0) = µi for all i ∈ {1, ..., n} and

µi(t+ 1) = µ1µi(t) + µ2µi(t) + ...+ µi−1µi(t) + µi [µ1(t) + ...+ µi(t)]

for all t ≥ 1 and i ∈ {1, ..., n}. We claim that for all t ≥ 0 we have ρt(a,A) =
∑n

i=1 µi(t)ρ0(a, Ci(A)).

The base case t = 1 holds by assumption. Suppose the claim is true for all k ≤ t. Then

ρt+1(a,A) =
n∑
i=1

µiρt(a, Ci(A)) =
n∑
i=1

µi

[
n∑
j=1

µj(t)ρ0(a, Cj ◦ Ci(A))

]
=

=
n∑
k=1

[
k−1∑
j=1

µjµk(t) + µk

k∑
i=1

ui(t)

]
ρ0(a, Ck(A)) =

n∑
i=1

µi(t+ 1)ρ0(a, Ci(A)).

The second equality follows by the induction assumption. The third equality follows since

Cj ◦ Ci(A) = Ck(A) if and only if i, j ≤ k and i = k or j = k. The last equality follows by

construction of the sequences µi(t).

We next show that limt→∞ µi(t) = 0 for all i ∈ {1, ..., n − 1}. First note that µ1(t + 1) =

µ1µ1(t) for all t ≥ 1, which gives the explicit solution µ1(t) = (µ1)
t and since µ1 ∈ (0, 1)

it follows that limt→∞ µ1(t) = 0. Assume that limt→∞ µi(t) = 0 for all i ∈ {1, ..., k} where

k < n− 1. We claim that limt→∞ µk+1(t) = 0. Since µk+1(t+ 1) = [µ1 + ...+ µk+1]µk+1(t) +

µk+1 [µ1(t) + ...+ µk(t)], it follows by lemma A.1 that limt→∞ µk+1(t) = µ∗ for some µ∗ ∈ R.

We claim that µ∗ = 0. To see this, note that

µ∗ − (µ1 + ...+ µk + µk+1)µ
∗ = lim

t→∞
[µk+1(t+ 1)− (µ1 + ...+ µk + µk+1)µk+1(t)]

= lim
t→∞

µk+1 [µ1(t) + ...+ µk(t)] = 0.
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Hence, since µ1 + ...+ µk + µk+1 < 1 it follows that µ∗ = 0. Finally, since
∑n

i=1 µi(t) = 1 for

all t ≥ 1, it follows that limt→∞ µn(t) = 1. Thus

lim
t→∞

ρt(a,A) = lim
t→∞

n∑
i=1

µi(t)ρ0(a, Ci(A)) = ρ0(a, Cn(A)),

as we wanted to show. �

A.5. Proof of proposition 7.2.

Proof. Assume by contradiction that ρ has two distinct PRC representations µ on {c1, ..., cn}
and µ′ on {c′1, ..., c′m}. Define Ci(A) = ∪nj=icj(A) and C ′i(A) = ∪mj=ic′j(A) for all i ≥ 1.

Then ρ(a,A) =
∑n

i=1 µiπc(a, Ci(A)) =
∑m

i=1 µ
′
iπc(a, C

′
i(A)). Moreover, C1(A) ⊆ Sρ(A) and

C ′1(A) ⊆ Sρ(A) for all A ∈ A. It follows by corollary 4.4 that µ = µ′, n = m and that

Ci = C ′i for all i ∈ {1, ..., n}. We prove by induction that ci = c′i for all i ∈ {1, ..., n}.

Base case: Clearly cn = Cn = C ′n = c′n. If cn−1(A) = cn(A) then Cn−1(A) = Cn(A) and

C ′n−1(A) = Cn−1(A) = Cn(A) = C ′n(A). Thus c′n−1(A) = c′n(A). If cn−1(A) 6= cn(A), then

cn−1(A) = Cn−1(A) \ Cn(A) = C ′n−1(A) \ C ′n(A) = cn−1(A).

Assume as induction hypothesis that ci = c′i for all i ≥ k and ci−1(A) = Ci−1(A) \ Ci(A) if

Ci−1(A) 6= Ci(A) and ci−1(A) = ci(A) otherwise (assume similarly that c′i−1(A) = C ′i−1(A) \
C ′i(A) if C ′i−1(A) 6= C ′i(A) and c′i−1(A) = c′i(A) otherwise).

Proof of induction step: We claim that ck−1 = c′k−1. Let A ∈ A. If ck−1(A) = ck(A) then

C ′k−1(A) = c′k−1(A)∪ ...∪c′n(A) = ck−1(A)∪ ...∪cn(A) = ck(A)∪ ...∪cn(A) = Ck(A) = C ′k(A).

Hence c′k(A) = c′k−1(A). If ck−1(A) 6= ck(A) then ck−1(A) = Ck−1(A) \ Ck(A) = C ′k−1(A) \
C ′k(A) = c′k−1(A). �

Appendix B. Remark 1: Example and proof

The following example shows that condition (2) in definition 2.3 is necessary for identifi-

cation in the Random Sequential Model.

Example B.1. Consider a universal choice set of three alternatives X = {a, b, c} and a �
b � c. Assume that C1(A) = C2(A) for all A 6= X and C1(X) = X and C2(X) = {c}. Define

an SCF ρ by

ρ(a,A) =
1

2
1{a = max(�, C1(A))}+

1

2
1{a = max(�, C2(A))}

for all a ∈ A and A ⊆ X. Note that C1(X) = X 6= {a, c} = {x ∈ X : ρ(x,X) > 0}, so ρ

violates condition (2) of an RSM.
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We next show that there is a distinct RSM representation ρ. Define an SCF ρ′ by

ρ′(a,A) =
1

2
1{a = max(�, C ′1(A))}+

1

2
1{a = max(�, C ′2(A))}

for all a ∈ A and A ⊆ X, where C ′1(X) = {a, c} and C ′1(B) = B for all B 6= X and C ′2 = C2.

It is then straightforward to verify that ρ = ρ′, but the representation is not unique since

C ′1(X) = {b, c} 6= X = C1(X). /

The next result shows that condition (2) in definition 2.3 is implied by condition (1), and

hence superfluous, when either the reference rule π or the stochastic choice function ρ is

positive.

Proposition B.2. If ρ satisfies condition (1) of an RSM, and if either π or ρ is positive,

then Ci(A) ⊆ {a ∈ A : ρ(a,A) > 0} for all A ∈ A and i ∈ I.

Proof. If ρ is positive the result is immediate. Next, assume that π is positive. If suffices to

show that C1(A) ⊆ {a ∈ A : ρ(a,A) > 0} for all A ∈ A. Let a ∈ C1(A) then π(a, C1(A)) >

0 and since ρ has an RSM representation it follows by the defining equation of an RSM

(condition 1) that ρ(a,A) > 0. �

Appendix C. Example C.1

Example C.1. Consider a choice set of three alternatives X = {a, b, c}. Suppose that

the reference rule π is such that π(b, {b, c}) = 0 and π(a,A) = 1
|A| for all a ∈ A and

A 6= {b, c}. Note, that π fails to satisfy weak regularity, since π(a,A) > 0 and π(b, A) > 0,

but π(b, A \ a) = 0.

Define an SCF ρ by

ρ(a,A) = µ1π(a, C1(A)) + µ2π(a, C2(A))

for all a ∈ A and A ⊆ X, where C1(X) = X and C2(X) = {b, c} and C1(B) = C2(B) = B

for all B 6= X and µ1 = µ2 = 1
2
.

Define an SCF ρ′ by

ρ′(a,A) = µ′1π(a, C ′1(A)) + µ′2π(a, C ′2(A))

for all a ∈ A and A ⊆ X, where C ′1(X) = X and C ′2(X) = {c} and C1(B) = C2(B) = B for

all B 6= X and µ′1 = µ′2 = 1
2
.

It is then straightforward to verify that ρ = ρ′, but the representation is not unique since

C ′2(X) = {c} 6= {b, c} = C2(X). /
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