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1. Introduction

Measurement error is omnipresent in empirical and experimental work on discrete choice.

Formally, measurement error is the difference between the measured value of a quantity

(observed choice frequencies) and its true but unobserved value (underlying choice frequen-

cies). There are several reasons why measurement error arises in choice data: participants

may choose not to respond to a survey, they may have difficulties understanding an exper-

imental design or they may lack the incentives to reveal their true choices. By its very na-

ture, measurement error may (quite drastically) alter the empirical conclusions drawn from

choice data (see e.g. Varian (1985), Echenique, Lee, and Shum (2011) and Aguiar and Kashaev

(2018) for a discussion of related issues in the revealed preference framework). Understand-

ing the impact of measurement error when evaluating theories of choice is therefore impor-

tant.

The recent literature has seen a surge in models/theories aiming at explaining choice

behavior. A key step in obtaining a better understanding of these models, is the characteri-

zation of the behavior consistent with them. The aim is to find a set of properties describing

their behavior and the idea is that it should be possible to verify/test these properties by

using a representative sample of choices. This exercise not only helps in understanding the

scope and limitations of the models, but may also guide the empiricist in designing tests of

the models.

Due to measurement error, representative samples are not always available, and further,

it is not necessarily the case that properties shown to hold using representative data con-

tinue to hold when data is subject to measurement error. Failing to take measurement error

into account may lead to an (over) under rejection problem whereby observed choices ap-

pear (in)consistent with a model due to measurement error rather than underlying choice

behavior.1 Given the prevalence of measurement error, the aim of this paper is thus to de-

velop methods to understand if and how measurement error impacts the empirical content

of models of choice.

The starting point of our empirical analysis is a pair of stochastic choice functions2 (ρ,ρ∗).

In such a pair, ρ∗ is not directly observed by the analyst and represents the choices/behavior

of a representative sample of the underlying population, whereas ρ represents directly ob-

served (but mismeasured) choice frequencies. The aim of the analyst is to infer properties

of ρ∗ by using observed choice frequencies ρ. Without any information on how ρ relates to

ρ∗ (i.e. the magnitude of the distortion) not much can be said about underlying behavior.

1We elaborate on these issues in subsection 1.2 of the introduction.
2A stochastic choice function encodes choice frequencies of alternatives in menus from a collection of

menus.
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To study ρ∗ using ρ the researcher needs information on how ρ relates to ρ∗. I.e., on mea-

surement error.3 Our main analysis will be focused on cases where ρ is, in various ways, an

ordinal perturbation of ρ∗. This is a relatively mild assumption as it requires no knowledge

about the distribution of the measurement error. Further, as we discuss later, it is satisfied by

many examples of interest. Our methodology may also be used to study other non paramet-

ric assumptions on measurement error (other common restrictions on measurement error

are discussed in section 9.1).

As an illustration of the type of situations we are interested in consider the following ex-

amples:

Example 1.1. An analyst conducts a survey and asks a representative sample of 120 indi-

viduals to pick their favorite brand among chocolates X = {x, y, z}. Out of the 120 individu-

als only 100 individuals report their favorite brand and the corresponding choice frequen-

cies are {61,30,9}. Observed choices are encoded by an SCF ρ where ρ(x, X ) = 61
100 ,ρ(y, X ) =

30
100 ,ρ(z, X ) = 9

100 , whereas ρ∗ is unknown and depends on the individuals who did not par-

ticipate in the survey. However, the researcher has information on the number of non par-

ticipants (20) and using this she can infer that ρ∗(x, X ) > ρ∗(y, X ) > ρ∗(z, X ). This ranking

agrees with the observed ranking ρ(x, X ) > ρ(y, X ) > ρ(z, X ). Thus, despite ρ∗ not being di-

rectly observed by the researcher, she observes the ordinal ranking induced by ρ∗. /

Example 1.2. A grocery store keeps track of the number of individuals purchasing items from

a set {x, y, z,u}. Suppose that the grocery store registers the following purchases of items:

{45,79,41,0}. Without further information on the number of individuals visiting the store

and their respective purchases it is difficult to calculate exact choice probabilities. Some in-

dividuals may for instance buy bundles of several items when visiting the store. Underlying

choice frequencies ρ∗ are unobservable due to the data collection method used by the store.

However, an analyst may still distinguish chosen alternatives (such as x, y, z) from never cho-

sen alternatives (such as u). /

Common to both of these examples is that there is information on observed choices, en-

coded by ρ, and - crucially - on measurement error (i.e. how ρ relates to ρ∗). We will explore

how the researcher can use information on observed choices and on measurement error to

infer properties about underlying behavior. In particular, our interest is in understanding

the impact of measurement error when testing models of choice. Formally, a model M is a

subset of the set of all stochastic choice functions. These are the set of SCFs conceived as

plausible by the researcher. An example is the random utility model, which is the collection

3The measurement error can now formally be defined as the difference ρ−ρ∗ between observed (but mis-
measured) choices ρ and unobserved (but true) choices ρ∗
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of stochastic choice functions that are represented by a probability distribution on prefer-

ences. The researcher would like to know/test whether underlying behavior ρ∗ is explained

by a certain model or not (if ρ∗ ∈ M or not), but she only has access to mismeasured data ρ.

As discussed in the introduction, and as Gillen, Snowberg, and Yariv (2019) judiciously

puts it, there are some "inferential dangers posed by measurement error". Observed data

may be (in)consistent with a model, despite this not being the case for underlying behavior.

A model is subject to over rejection, if measurement error makes it appear as if data violates

the model (ρ ∉ M), despite underlying data being consistent with it (ρ∗ ∈ M). Similarly a model

is subject to under rejection, if measurement error makes it appear as if data is described by

the model (ρ ∈ M), but underlying data is not (ρ∗ ∉ M). These issues are closely related to type

I/type II errors is statistical decision making. They are referred to as over/under rejection due

to the researchers’ tendency to incorrectly reject/not reject a model in such circumstances.

Generally, the severeness of these issues is directly proportional to the severeness of mea-

surement error.

Due to complications such as these, it would clearly be convenient if there were mod-

els that were not exposed to over/under rejection. The researcher could then, in princi-

ple, ignore measurement error and use convential tests (developed for traditional stochastic

choice data) to study such models. Further, for models that are sensitive to measurement

error, it would be desirable to devise tests that reduce issues of over/under rejection. The

aim of this paper is to explore these matters further.

Our first contribution is to identify classes of robust models that, under suitable assump-

tions on measurement error, are insensitive to under/over rejection. As explained above, our

main focus is on cases where measurement error is such that observed choices are ordinally

related to underlying choices. We call such models ordinal. But, in principle, our method-

ology is applicable to study any conceivable restriction on measurement error (see section 2

for further details). Roughly speaking, an ordinal model is robust to ordinal perturbations of

data. This means that if we take an SCF in the model and an increasing transformation of this

SCF, then the new perturbed SCF has to be explained by the model as well. We will illustrate

this concept further in section 1.2 below. There is an abundance of ordinal models: the sim-

ple scalability model (Tversky, 1972), the additive perturbed utility model (APU) (Fudenberg,

Iijima, and Strzalecki, 2015), the single crossing random utility model (Apesteguia, Ballester,

and Lu, 2017) and the dual random utility model (Manzini and Mariotti, 2018) are all such

models. We also identify a large class of models, random sequential rules, that are ordinal.

As a corollary it follows that stochastic versions of satisficing Simon (1955) and sequential ra-

tionalizability Manzini and Mariotti (2007) as well as the gradual pairwise comparison rule

of Dutta (2020) are ordinal. Furthermore, some models of stochastic choice require sub-
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stantially less information in describing their behavior. To accommodate this, we introduce

several natural weakenings of ordinality. The weakest notion says that it is possible to fully

describe the behavior of a model using deterministic data on choices (such as in example

1.2).

A second contribution of this paper is to discuss and develop methods to study the em-

pirical content of models that are sensitive to measurement error. Again, our focus is on

models that are sensitive to ordinal data, but our methodology applies to other restrictions

on measurement error as well. Both the random utility model (RUM) and the Luce model

are examples of non ordinal models. Measurement error is perhaps of greatest concern for

such models, as they are exposed to issues of over/under rejection. To study the empirical

content of non ordinal models, section 7 introduces the concepts of ordinal closure and or-

dinal interior of a model. Basing a test of a model on its ordinal closure/interior rules out is-

sues of over/under rejection. It is defined as the smallest/largest (in a specific sense) ordinal

model contained in/containing a given (non ordinal) model. The ordinal closure/interior

of a model thus approximates a given (non ordinal) model with the ordinal model closest

to it. Since ordinal models are immune to measurement error, the idea is that the approx-

imated model will inherit some of these properties as well. Roughly speaking, the ordinal

closure/interior of a model is the best description possible with mismeasured data. We will

continue our discussion of these notions in section 7.

1.1. Outline

The remainder of the paper is devoted to studying versions of these notions and applying

them to (well known) models of choice. Our main notions of robustness are introduced and

discussed further in section 3 and section 4. We consider several notions of robustness each

corresponding to different types of measurement error. Example 1.1 considers one particular

type of distorted data. In a sense, the distortion of that data set is "small". We also consider

more extreme cases of distortion where less information on choices is available. As a partic-

ular example we consider data sets with only deterministic information on choices available

(see example 1.2). Arguably, the degree of distortion of any data set "naturally occurring" in

practice is in between these two in strength. I.e. it has more information on choices than

a deterministic correspondence but less so than the full ranking induced by an SCF. Hence,

knowledge of the behavior of a model on these data sets is in many cases sufficient to infer

their behavior on general distorted data sets.4 For illustrative purposes we also consider an

example of data set intermediate in strength of distortion.

4We elaborate further on this in the accompanying online appendix.
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In section 5 and 6, we consider specialized models of choice and their ordinal properties.

Section 5 is confined to the classical random utility model and various subclasses of it. The

classical random utility model is in general not ordinal. However, two prominent subclasses

of the random utility model, the single crossing RUM of Apesteguia et al. (2017) and the dual

random utility model of Manzini and Mariotti (2018), are both ordinal. The dual random

utility model is not only ordinal, but also deterministic. This means that it is possible to

describe the behavior of this model using deterministic data on choices.

Section 5.4 identifies a large class of models, random sequential models (RSMs), that are

shown to be ordinal. It follows as a corollary to this result that many subclasses of RSMs,

including the GPCR of Dutta (2020) and stochastic versions of satisficing and sequential ra-

tionalizability (Manzini and Mariotti (2007)), are ordinal.

Section 6 considers ordinal properties of the Luce model and close relatives to it. More

specifically, we consider the classical Luce model, the simple scalability model (SSM) Tversky

(1972) and the APU model Fudenberg et al. (2015). Our main finding is that the SSM and the

APU model are ordinal, whereas the Luce model is not.

Section 7 introduces the notion of ordinal closure/ interior of a model. We apply these

notions in section 8 and study the ordinal closures/interiors of the random utility model

and the Luce model. Our first result is a characterization of the ordinal closure of the ran-

dom utility model. This problem is closely related to that of finding a representation of a

subjective probability relation (see Kraft, Pratt, and Seidenberg (1959), Scott (1964), Fish-

burn (1969, 1986), Insua (1992), Alon and Lehrer (2014)). This result thus links two hitherto

largely unconnected literatures: one on stochastic/discrete choice and the other on subjec-

tive/imprecise probability.

A second, rather striking result, is that the observable implications of the random utility

model are vacuous for a large collection of distorted data sets. More precisely, the random

utility model is not testable whenever the data set is such that it only contains information

about the relative rankings of alternatives within menus. This result illustrates the rich be-

havior associated with a RUM and is in stark contrast to for example the Luce model, where

the ranking of alternatives within menus needs to agree with a fixed utility function.

Section 9 concludes with a discussion of the framework adopted in the current paper and

topics for future research. Subsection 9.1 discusses another type of restriction on measure-

ment error, called moment restricted data. Roughly speaking, the researcher observes the

moments of an SCF, but not the entire underlying SCF. This is much like average choice data

in Ahn, Echenique, and Saito (2018), except that the researcher also has access to higher or-

der moments (i.e. moments beyond the average). We discuss the relation to Ahn et al. (2018)

and obtain a characterization of the Luce rule using moment restricted data. Subsection
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9.2 discusses a comparative notion of robustness to address questions such as: when can a

model of choice be considered more robust than another model of choice? Which model is

the most robust among a collection of models? We also discuss how to apply our framework

to classify properties of stochastic choice functions in section 9.3 and further outline how

this could be useful in obtaining axiomatic characterizations of models of choice.

1.2. Illustration

The following subsection serves as a further illustration of the issues of over/under rejec-

tion in the context of example 1.1. A second purpose is to illustrate that ordinal models are

immune to these issues.

The under rejection problem. In example 1.1, suppose that the researcher conjectures a

model of choice that stipulates that chocolate x is preferred by more than 60% of the pop-

ulation, i.e. that ρ∗(x, X ) ≥ 0.6. Ignoring the issue of non-participants the researcher would

be inclined to conclude that data supports her conjecture since, ρ(x, X ) = 61
100 > 0.6. How-

ever, suppose that the researcher could elicit the choices of the non participants and it turns

out that all of them have y as their favorite brand, then ρ∗(x, X ) = 61
120 < 0.6, suggesting that

her initial conjecture was false. In such a case, the researcher would end up failing to reject

her conjectured model. This would thus be a manifestation of the under rejection problem

discussed above.

The over rejection problem. Suppose instead that the researcher conjectures a model of

choice that stipulates that choclate x is preferred by more than 65 % of the population, i.e.

that ρ∗(x, X ) ≥ 0.65. Ignoring the issue of non-participants the researcher would be inclined

to conclude that her initial conjecture was false since ρ(x, X ) = 61
100 < 0.65. However, if all

non participants have x as their favorite brand, then ρ∗(x, X ) = 81
120 > 0.65, suggesting that

her initial conjecture was indeed true. In such a case, the researcher would falsely reject her

conjectured model, a manifestation of the over rejection problem discussed above.

Ordinal models. Now, consider a model which predicts that x is the most popular brand

in X , i.e. that ρ∗(x, X ) ≥ ρ∗(y, X ) and ρ∗(x, X ) ≥ ρ∗(z, X ). This model does not suffer from

the issues mentioned above. Irrespectively of the choices of the non participants one can

show that x is the most popular choice in X . The stipulated model is not sensitive to ordinal

perturbations of data. In other words, ρ∗ in example 1.1 is an increasing transformation of ρ,

and this implies - independently of the choices of the non participants - that ρ∗ is consistent

with the model if and only if ρ is. This is hence an example of an ordinal model.

6



1.3. Related literature

The literature dealing with measurement error in statistical and econometric analysis is vast.

To the best of our knowledge this is the first paper to study the impact of measurement er-

ror in the context of stochastic choice analysis. There is a tangentially related literature that

focuses on similar issues in revealed preference theory. Notable are the papers by Varian

(1985), Echenique et al. (2011) and Aguiar and Kashaev (2018) . The framework in Aguiar

and Kashaev (2018) is fully nonparametric and in contrast to earlier work they impose no dis-

tributional assumptions on measurement error. Our characterization of the random utility

model (using data subject to measurement error) in section 7 is also nonparametric. Aguiar

and Kashaev (2018) impose a centering (moment) condition on measurement error, whereas

we assume that observed (but mismeasured) data is ordinally related to underlying data. In

contrast to earlier work we also identify models of choice that are insensitive to measure-

ment error, whereas prior work mainly focuses on providing methods to test models that are

known to be affected by measurement error.

Our paper is also related to a literature investigating issues pertaining to limited infor-

mation and data availability in stochastic/discrete choice. Notable in this regard are the pa-

pers by Fishburn (1978), Ok and Tserenjigmid (2020), De Clippel and Rozen (2020) and Ahn,

Echenique, and Saito (2018). Ahn et al. (2018) studies an axiomatic characterization of the

Luce rule assuming that only data on average choices from menus is available. De Clippel

and Rozen (2020) consider issues of limited data availability in testing theories of bounded

rationality. Fishburn (1978) and Ok and Tserenjigmid (2020) study deterministic implica-

tions of stochastic choice models. I.e. they associate to each stochastic choice function a de-

terministic choice correspondence and then study the relationship between the properties

satisfied by the SCF and those satisfied by the correspondence. Their study mainly considers

the rationality properties of the induced correspondences. Our focus is different from Ok

and Tserenjigmid (2020). We are interested in the testable implications of stochastic choice

models assuming that deterministic data is observed.

Related are also the papers Apesteguia and Ballester (2015) and Apesteguia and Ballester

(2020). Apesteguia and Ballester (2015) studies a measure of rationality and welfare. In par-

ticular, they study and introduce the SWAPs index, which measures how closely a data set

satisfies the utility maximization hypothesis. Apesteguia and Ballester (2020) proposes a

goodness of fit measure for stochastic choice models, which is the largest fraction of data

consistent with a model. Similarly to us they acknowledge that observed data may differ

from true underlying data and they separate observed data into two distinct components:

one structured portion that represents underlying behavior and one unstructured portion

which represents residual behavior. The residual part in their separation exercise may be in-
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terpreted as measurement error. They are interested in the largest fraction of data explained

by a certain model, i.e. minimizing the residual behavior, whereas we take residual behavior

as given and ask whether it impacts inferences from choice data.

2. Mismeasured data

Before introducing the basic primitive of our analysis, we need some preliminary notation

and definitions. Let X be a finite set of alternatives. A nonempty subset A ⊆ X is called a

menu. We denote by A a collection of menus, i.e. A ⊆ 2X \;. A stochastic choice function

(SCF) is a function ρ : X ×A 7→ [0,1] such that we have
∑

a∈A ρ(a, A) = 1 for all menus A ∈A .

Let SCF denote the set of all stochastic choice functions on X ×A .

To study the impact of measurement error, this paper takes as primitive a pair of stochas-

tic choice functions (ρ,ρ∗). The stochastic choice function ρ∗ encodes data that is represen-

tative of the underlying population. In contrast, ρ reflects mismeasured/distorted data that

is not necessarily representative. We assume that the researcher/analyst/outisde observer

has access to or "observes" ρ but not ρ∗. 5 The goal of the analyst is then to infer properties

of ρ∗ by using mismeasured data ρ.

Definition 2.1. A distorted data set is a pair (ρ,ρ∗) of stochastic choice functions. /

The measurement error of a distorted data set (ρ,ρ∗) can now formally be defined as

ε= ρ−ρ∗, i.e. the difference between observed and underlying choice frequencies. Knowl-

edge of underlying choice frequencies ρ∗ is thus equivalent to knowledge of measurement

error ε. Any difference between ρ and ρ∗ is by definition due to measurement error ε. To

infer properties about underlying behavior ρ∗ using ρ, the researcher needs information on

measurement errror, or equivalently, on the relation between ρ and ρ∗. Below, we will im-

pose various restrictions on the relation between ρ and ρ∗. Formally, a restriction on mea-

surement error is a subset R ⊆ SCF×SCF.

Definition 2.2. A distorted data set (ρ,ρ∗) such that (ρ,ρ∗) ∈R is called an R data set. /

R can be thought of as representing the type and extent of measurement error that the

researcher believes that data is subject to. These restrictions are specific to the particu-

lar application at hand and reflect the researchers knowledge about measurement error. If

R = SCF×SCF then measurement error is unrestricted. The researcher believes that any un-

derlying behavior ρ∗ is consistent with observed ρ since (ρ,ρ∗) ∈ R for all ρ∗. Thus, given

observed ρ nothing can be said about underlying (and unobserved) behavior ρ∗.

5In reality, the researcher observes a sample drawn from ρ, which introduces sampling error. In the sequel,
we assume a sufficiently large sample to rule out issues of sampling error.
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It is clear that the researcher needs to impose restrictions on measurement error, and

hence R, to make inferences about underlying behavior. The type of restriction that the

researcher imposes depends on the researchers’ knowledge of measurement error specific

to the studied application. We will next discuss some important examples of such restric-

tions and situations/applications where these restrictions might be applicable. As a first

type of restriction, we consider data sets where measurement error is such that ρ is an in-

creasing/ordinal transformation of ρ∗.

Definition 2.3. A distorted data set (ρ,ρ∗) such that

ρ(a, A) ≥ ρ(b,B) ⇔ ρ∗(a, A) ≥ ρ∗(b,B)

for all a,b ∈ X and A ∈A is called an ordinal data set. /

An ordinal data set corresponds to a case where disrtortion of data is "small" in that the

complete ordinal ranking induced by some underlying SCF ρ∗ is observed. Studying such

data could be useful in situations, like example 1.1 where an analyst has some degree of con-

fidence in the ordinal ranking of alternatives, but is perhaps not convinced that observed

choice frequencies, as encoded by ρ, reflect exact choice frequencies of the underlying pop-

ulation ρ∗. The following result, which is immediate (the proof is supplied in the appendix),

shows that any "generic" pair of SCFs (ρ,ρ∗) is an ordinal data set provided that ρ is mea-

sured with sufficiently small error ε. This hence formalizes the intuition that ordinal data

sets correspond to situations where measurement error is small.

Proposition 2.1. For almost all ρ∗ ∈ SCF (in the sense of Lebesgue, see proof for details) there

is an ε> 0 such that if ρ ∈ SCF with ||ρ−ρ∗|| < ε then (ρ,ρ∗) is an ordinal data set.

Our next example, imposes less stringent assumptions on measurement error than ordi-

nal data sets do.

Definition 2.4. A distorted data set (ρ,ρ∗) such that:

ρ(a, A) ≥ ρ(b, A) ⇔ ρ∗(a, A) ≥ ρ∗(b, A)

for all a,b ∈ X and A ∈A is called an within menu data set. /

Intuitively, the observed SCF ρ captures within menu variation of underlying choices ρ∗.

Within menu data could be useful in situations where a researcher has reliable information

on the relative ranking of choice frequencies within menus, but where choice frequencies

across menus are difficult to compare. As we will see later, there are models of stochastic
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choice whose empirical content could be fully described by using the limited information in

an within menu data set. The next example illustrates a scenario where data on choices is

naturally encoded by such a data set.

Example 2.1. A researcher thinks that choices are governed by a stochastic choice function

ρ∗. She conducts an experiment to test her hypothesis. However, she also believes that with

small but positive probability some subjects in her experiment will choose a random op-

tion not conforming to the ρ∗ process. This could be either because these subjects miss-

interpret the choice task, or because they lack the incentives to reveal their true choices. The

researcher hence observes an SCF ρ where:

ρ(a, A) = (1−α(A))ρ∗(a, A)+α(A)
1

|A|

for all a ∈ A and A ∈ A , where α : A → [0,1] is an error function. Note that the error term is

menu dependent to reflect that subjects’ incentives to reveal their true choices differ across

menus. Subjects may for instance be less inclined to reveal their true choices when menus

are large as opposed to small (as the cognitive costs to do so are higher). Then (ρ,ρ∗) is an

example of an within menu data set.6 /

The next example reflects a case of quite extreme measurement error. The researcher is

only able to distinguish between alternatives based on whether they are chosen or not in a

menu.

Definition 2.5. A data set (ρ,ρ∗) such that:

ρ(a, A) > 0 ⇔ ρ∗(a, A) > 0

for all a ∈ X and A ∈A is called a deterministic data set. /

Example 1.2 of the introduction is an example of a deterministic data set.

3. Robust stochastic choice models

We next turn to the issue of testing models of choice in the presence of measurement er-

ror. Formally, a model is a subset M⊆ SCF. I.e. M is a collection of stochastic choice functions

entertained by the researcher. A main concern when testing models of choice using mismea-

sured data is the problem of over/under rejection. A model is subject to over/under rejection

6To see this, note that ρ(a, A)−ρ(b, A) = (1−α(A))[ρ∗(a, A)−ρ∗(b, A)] for all a,b ∈ A.
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if observed data appears (in)consistent with the model despite this not necessarily being the

case for underlying behavior. An observed (non-) violation of the model could then be due

to measurement error rather than underlying behavior. The aim of this section is to formally

introduce the notion of a robust model. Roughly, speaking these are models where distorted

choices ρ convey as much about underlying behavior as ρ∗ does.

3.1. Over and under rejection problem

Before introducing our main notion of robustness, it is instructive to formally investigate

what it means for a model to be subject to over/under rejection. Recall that R is a subset

of the pair of all SCFs and reflects the researcher’s knowledge about measurement error. A

model is subject to over rejection if there is some conceivable measurement error (consis-

tent with R) such that observed (but mismeasured) choices are inconsistent with the model,

whereas underlying choices are not.

Definition 3.1. A model M is subject to R over rejection if there is a distorted data set (ρ,ρ∗) ∈
R such that

ρ ∉ M and ρ∗ ∈ M.

/

We refer to this issue as over rejection since if the researcher rejects model M whenever

she observes ρ ∉ M, she would sometimes incorrectly reject the true underlying model. In

contrast, a model is subject to under rejection, if there is some (conceivable) measurement

error such that observed choices are consistent with the model, whereas underlying choices

are not.

Definition 3.2. A model M is subject to R under rejection if there is a distorted data set

(ρ,ρ∗) ∈R such that

ρ ∈ M and ρ∗ ∉ M.

/

The idea behind the term under rejection, is that if the researcher employs the decision

rule: "reject whenever ρ ∉ M" she would sometimes fail to reject her hypothesised model M.

3.2. Definition of robustness to measurement error

The discussion above leads us to our main definition of a model being robust to (certain

types of) measurement error. Roughly speaking, such a model is not exposed to issues of
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over/under rejection. Thus, using observed choices ρ, a researcher would be able to tell

whether ρ∗ ∈ M or not.

Definition 3.3. A model M is R robust to distorted data if for all data sets (ρ,ρ∗) ∈R we have:

ρ ∈ M ⇔ ρ∗ ∈ M.

/

In other words, a model is robust to R distorted data if and only if it is not subject to R

over/under rejection. As mentioned before, the researcher needs knowledge on the relation

between ρ and ρ∗ as encoded by R in order to deduce anything about underlying behavior

ρ∗ using observed ρ. The above definition sheds some light on why this is the case. If no

restrictions are imposed (R = SCF×SCF), then all models M (except SCF) will be subject to

over/under rejection and it will in general be difficult to use ρ to test whether underlying

behavior conforms to a particular model. 7

4. Ordinal models

We will next focus our discussion around the examples in section 2. We will thus study mod-

els that are robust to ordinal/within menu ordinal and deterministic perturbations of data.

Arguably, the degree of measurement error of any data set naturally occurring in practice is

in between that of a deterministic and ordinal data set.

Definition 4.1. A model M is ordinal/within menu ordinal/deterministic if for all ordinal/within

menu ordinal/deterministic data sets (ρ,ρ∗) we have:

ρ ∈ M ⇔ ρ∗ ∈ M.

/

It is straightforward to verify that any within menu ordinal model is ordinal. Similarly, it

follows that any deterministic model is within menu ordinal. The deterministic assumption

is in this sense the weakest (fewer models satisfy it), whereas the ordinal assumption is the

strongest. We discuss these notions in some greater detail below.

7To see this, let M ⊂ SCF and pick ρ∗ ∈ SCF \M. Then any observed SCF ρ ∈ M is consistent with ρ∗, since
(ρ,ρ∗) ∈ SCF×SCF. Similarly, if the researcher observes ρ ∉ M, then any ρ∗ ∈ M is consistent with ρ.
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4.1. Characterization: ordinal models

A model is ordinal if the information provided byρ in an ordinal data set (ρ,ρ∗) is sufficient to

determine whether ρ∗ ∈ M or not. Formally, we restrict R in definition 4.1 to the collection of

ordinal data sets. By proposition 2.1 we may view an ordinal model as a model that is robust

to small amounts of measurement error. The following proposition characterizes ordinal

models, and shows that ordinal models only depend on the ordinal information of choice

probabilities.

Proposition 4.1. The following statements are equivalent:

1. M is an ordinal model.

2. If ρ′ ∈ M and ρ ∈ SCF and

ρ(a, A) > ρ(b,B) ⇔ ρ′(a, A) > ρ′(b,B) (1)

for all (a, A), (b,B) ∈ X ×A implies that ρ ∈ M.

3. For all ρ ∈ SCF with ρ = v ◦ρ′ for some ρ′ ∈ M and strictly increasing (continuous) func-

tion v : [0,1] → [0,1] with v(0) = 0 we have ρ ∈ M.

The proof of proposition 4.1 is straightforward and follows by unwinding the definition

of an ordinal model. We will apply this notion in section 5 and section 6 to show that several

well-known models are indeed ordinal.

4.2. Characterization: within menu ordinal models

As explained above, a model is ordinal if it is possible to determine whether an SCF belongs

to the model or not by using the full ordinal ranking of choice probabilities. If a model is

within menu ordinal then it is possible to determine model membership of an SCF by solely

using rankings of items within menus. This could be useful in situations such as in example

2.1. The following proposition characterizes within menu ordinal models.

Proposition 4.2. The following statements are equivalent:

1. M is an within menu ordinal model.

2. If ρ′ ∈ M and ρ ∈ SCF and

ρ(a, A) > ρ(b, A) ⇔ ρ′(a, A) > ρ′(b, A)

for all (a, A), (b, A) ∈ X ×A implies that ρ ∈ M.
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3. If ρ′ ∈ M and ρ ∈ SCF, and if there for each A ∈ A is a strictly increasing (continuous)

function v A : [0,1] → [0,1] with v A(0) = 0 such that ρ(·, A) = v A ◦ρ′(·, A) then ρ ∈ M.

4.3. Characterization: deterministic models

The strongest notion (logically) of ordinality that we will consider essentially says that the

properties satisfied by a model are deterministic. Differently put, such a model is (very)

insensitive to the correct specification of choice probabilities. The following proposition

characterizes deterministic models.

Proposition 4.3. The following statements are equivalent:

1. M is a deterministic model.

2. If ρ′ ∈ M and ρ ∈ SCF and

ρ(a, A) > 0 ⇔ ρ′(a, A) > 0

for all (a, A) ∈ X ×A implies that ρ ∈ M.

3. If ρ ∈ SCF and ρ′ ∈ M, and if there for each A ∈A is a (continuous) function v A : [0,1] →
[0,1] that is strictly positive on (0,1] and has v A(0) = 0 such that ρ(·, A) = v A ◦ρ′(·, A)

then ρ ∈ M.

Thus, if a model is deterministic and ρ is an SCF of a certain model, then every SCF with

support equal to ρ belongs to the model. Deterministic models represent a case of extreme

impreciseness, in that it is possible to pin down model membership although data is (very)

imprecise. A deterministic model should not be confused with a deterministic stochastic

choice function. The former refers to a property satisfied by a class of SCFs, whereas the

latter refers to a property satisfied by a single SCF. For example, the dual Random Utility

Model of Manzini and Mariotti (2018) is a deterministic model. But it is clear that not every

SCF with a dRUM representation is a deterministic SCF.

5. Ordinality of random utility models

We first investigate ordinal properties of the random utility model8 (and close relatives to it).

As we will see, a notable property of the random utility model is that it is not ordinal. There

are however interesting subclasses of RUMs that are ordinal.

8The random utility model has received wide attention in the literature on stochastic choice. Notable con-
tributions are Gul and Pesendorfer (2006), Lu (2016), Apesteguia, Ballester, and Lu (2017), Manzini and Mariotti
(2018), Frick, Iijima, and Strzalecki (2019) and Piermont and Teper (2020).
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5.1. Classical random utility model

Let P denote the set of strict linear orders on X . For all A ⊆ X and a ∈ A denote by P (a, A) =
{P ∈P : max(P, A) = a}. A stochastic choice function ρ has a random utility representation if

there is a measureµ on P such that ρ(a, A) =µ(P (a, A)) for all a ∈ A and A ∈A . The random

utility model is the class of SCFs with a random utility representation and is denoted by RUM.

Proposition 5.1. The random utility model is not an ordinal model.

The proposition above follows by the next example.9

Example 5.1. Let X = {a,b,c,d}. First note that any RUM must satisfy the following inequal-

ity:

ρ(a, ab)−ρ(a, abc) ≥ ρ(a, abd)−ρ(a, abcd) (2)

We construct a RUM ρ and a stochastic choice function ρ′ such that (ρ,ρ′) is an ordinal data

set and such that ρ′ violates the previous inequality. Let linear orders P1,P2,P3 be defined as

in the table below.

P1 P2 P3

c c d

a d a

b b b

d a c

Let p1, p2, p3 be numbers such that 0 < p1 < p2 < p3 < 1 and p1 + p2 + p3 = 1. Define a

probability measure µ on P by µ(Pi ) = pi for all i ∈ {1,2,3}. Now we note that:

ρ(a, ab) = p1 +p3 (3)

ρ(a, abc) = p3 (4)

ρ(a, abd) = p1 (5)

ρ(a, abcd) = 0 (6)

Thus the inequality in equation (2) is binding. Further, note that there is only one (b,B) ∈
X ×A such that ρ(b,B) = p1 + p3 and this is (b,B) = (a, ab) and similarly there is only one

(b,B) such that ρ(b,B) = p2 and this is (b, ab). Let

ε1 = min
(b,B)∈X×A \(a,ab)

|ρ(a, ab)−ρ(b,B)|,

9Example 5.1 requires |X | > 3. The random utility model is characterized by monotonicity when |X | ≤ 3. The
set of SCFs satisfying monotonicity is an ordinal model.
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ε2 = min
(b,B)∈X×A \(b,ab)

|ρ(b, ab)−ρ(b,B)|

and let 0 < ε < min{ε1,ε2}
2 . Define a new stochastic choice function ρ′ by ρ′(a, A) = ρ(a, A) for

all (a, A) ∈ X ×A \{(a, ab), (b, ab)} and ρ′(a, ab) = ρ(a, ab)−ε and ρ′(b, ab) = ρ(b, ab)+ε. It is

now straightforward to check that ρ(a, A) > ρ(b,B) ⇔ ρ′(a, A) > ρ′(b,B) for all (a, A), (b,B) ∈
X ×A . But note that

ρ′(a, ab)−ρ′(a, abc) = p1 +p3 −ε−p3 = p1 −ε< p1 = ρ′(a, abd)−ρ′(a, abcd).

It follows that ρ′ fails to satisfy equation (2) and hence cannot have a random utility repre-

sentation. /

The above example demonstrates that the random utility model is in general sensitive to

measurement error. Small perturbations of choice probabilities gives data that is inconsis-

tent with the random utility model. However, the menu collection used to construct example

5.1 is quite specific and contains all nonempty subsets of the grand set X of alternatives. In

empirical/experimental work on choice it is common to encounter more restricted menu

collections. This begs the question whether there are specific choices of A such that the

random utility model is ordinal when using A as menu collection. The following proposi-

tion shows that the random utility model is ordinal when restricted to the "leave-one-out"

menu variation used by Abaluck and Adams (2020) and further analysed in Dardanoni et al.

(2020). More, precisely the "leave-one-out" menu variation A consists of the grand set of

alternatives X and the collection of subsets of X obtained by removing one element from X

(all sets of the form X \ a for some a ∈ X ).

Proposition 5.2. Let A be the "leave-one-out" menu variation. Then the random utility

model is ordinal.

The proof of proposition 5.2 is in subsection A.2 of the appendix.

5.2. Single crossing random utility models

In a recent, very interesting paper, Apesteguia et al. (2017) introduce the single crossing ran-

dom utility model (SCRUM). Formally, let Â be a linear order. A stochastic choice function

ρ is a single crossing random utility model, if ρ is a RUM with measure µ on P and there

is an ordering {P1, ...,PT } of the support of µ such that if x Â y and s > t then xPt y implies

xPs y . I.e. Ps is more "aligned" with Â than Pt . Denote by SCRUM the class of SCRUM stochas-

tic choice functions, i.e. the collection of SCFs that are SCRUM w.r.t. some linear order Â.

Clearly SCRUM⊂ RUM. Since RUM is not an ordinal model, one may expect the same to be true
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for SCRUM. This is however not the case. As the following proposition shows SCRUM is an

ordinal model:

Proposition 5.3. Let A contain all binary and ternary subsets then SCRUM is an ordinal model.

Proof. Let ρ ∈ SCRUM and let ρ′ ∈ SCF with ρ(a, A) ≥ ρ(a,B) if and only if ρ′(a, A) ≥ ρ′(a,B)

for all a ∈ X and A,B ∈ A . Apesteguia et al. (2017) characterize SCRUMs using mono-

tonicity/regularity and a property called centrality: If x Â y Â z and ρ(y, {x, y, z}) > 0, then

ρ(x, {x, y}) = ρ(x, {x, y, z}) and ρ(z, {y, z}) = ρ(z, {x, y, z}). Hence it suffices to show that ρ′ sat-

isfies monotonicity and centrality. It is immediate thatρ′ satisfies monotonicity. Let x Â y Â z

and ρ′(y, {x, y, z}) > 0. Then, since ρ′(y, {x, z}) = 0 it follows that ρ′(y, {x, y, z}) > ρ′(y, {x, z}).

Henceρ(y, {x, y, z}) > ρ(y, {x, z}) = 0. Sinceρ satisfies centrality we haveρ(x, {x, y}) = ρ(x, {x, y, z})

and ρ(z, {y, z}) = ρ(z, {x, y, z}) and using that for all a ∈ X and A,B ∈ A : ρ(a, A) ≥ ρ(a,B)

if and only if ρ′(a, A) ≥ ρ′(a,B), it immediately follows that ρ′(x, {x, y}) = ρ′(x, {x, y, z}) and

ρ′(z, {y, z}) = ρ′(z, {x, y, z}).

Thus, in contrast to the random utility model, SCRUM coops quite well with ordinal data.

However, SCRUM is not an within menu ordinal model (and hence not a deterministic model).

Proposition 5.4. SCRUM is not an within menu ordinal model.

Proposition 5.4 follows by example 5.2 below.

Example 5.2. To see that SCRUM is not within menu ordinal. Let a Â b Â c. Define P1 by

cP1bP1a and P2 by bP2aP2c. Then P1 and P2 are single crossing w.r.t. Â. Define a SCRUM ρ

by ρ(a, A) = 1
3 1{a = max(A,P1)}+ 2

3 1{a = max(A,P2)}. Note that ρ(c, {a,b,c}) = ρ(c, {b,c}) = 1
3

and ρ(b, {a,b,c}) = ρ(b, {b,c}) = 2
3 . Define an SCF ρ′ by ρ′(b,B) = ρ(b,B) for all b ∈ B ⊆ {a,b,c}

with B 6= {b,c}. Set 1−ρ′(c,bc) = ρ′(b,bc) = 3
4 . It is then clear that (ρ,ρ′) is an within menu

data set. However ρ′(c,bc) = 1
4 < 1

3 = ρ′(c, abc), so ρ′ is not monotone. Hence ρ′ ∉ SCRUM. /

5.3. Dual random utility model

The dual Random Utility Model (dRUM) is a variation of the classical random utility model,

where utility depends on at most two states and where choice probabilities are allowed to

be menu dependent. The class of dRUMs was introduced by Manzini and Mariotti (2018).10

Formally, a stochastic choice function ρ is a dual Random Utility Model (dRUM) if there is

a function α : 2X \;→ (0,1) and there are linear orders P1 and P2 such that for all a ∈ A and

A ⊆ X :

ρ(a, A) =α(A)1{a = max(A,P1)}+ (1−α(A))1{a = max(A,P2)}.

10see also Manzini, Mariotti, and Petri (2019).
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If there is α ∈ (0,1) with α(A) = α for all A ∈ A then ρ is an independent dRUM (idRUM).

Every idRUM is a RUM, but the class of dRUMs is not necessarily a subset of the class of

RUMs, due to the menu dependent choice probabilities α(A). The following proposition

shows that only deterministic (hence ordinal) information is needed in determining whether

an SCF is a dRUM or not.

Proposition 5.5. The dual random utility model is a deterministic model.

Proof. Let ρ be an SCF s.t. there is a function α : 2X \;→ (0,1) and there are linear orders P1

and P2 such that for all a ∈ A and A ⊆ X : ρ(a, A) = α(A)1{a = max(A,P1)}+ (1−α(A))1{a =
max(A,P2)}. Let ρ′ ∈ SCF be such that (ρ,ρ′) is a deterministic data set. Define β(A) =
ρ′(max(P1, A), A) for all A ∈ A . Then ρ′(a, A) = β(A)1{a = max(A,P1)} + (

1−β(A)
)

1{a =
max(A,P2)}. Thus ρ′ ∈ dRUM, as we wanted to show.

Since dRUM is a deterministic model, it follows as a corollary that dRUM is an within menu

ordinal model as well. In contrast to the situation for dRUMs, much more information about

choice probabilities is needed in order to pin down the behavior of idRUMs. As the following

proposition shows idRUMs are ordinal, but not necessarily within menu ordinal (and hence

not deterministic). The intuition behind this result is quite simple as idRUMs put harsh

restrictions on choice probabilities in that they are required to be constant across menus.

Proposition 5.6. The class of idRUMs is an ordinal model, but not an within menu ordinal

model.

Proof. Let ρ be an SCF s.t. there is an α ∈ (0,1) and there are linear orders P1 and P2 such

that for all a ∈ A and A ⊆ X : ρ(a, A) = α1{a = max(A,P1)}+ (1−α)1{a = max(A,P2)}. Let

ρ′ ∈ SCF be such that (ρ,ρ′) is an ordinal data set. Then there is a strictly increasing function

v : [0,1] → [0,1] s.t. v(0) = 0 and ρ′ = v ◦ρ. By checking a few cases (depending on whether

a = max(A,P1) or a = max(A,P2) or both) it is readily verified that ρ′(a, A) = v(α)1{a =
max(A,P1)}+ (1− v(α))1{a = max(A,P2)} for all a ∈ A and A ⊆ X . The proof that idRUM is

not within menu ordinal follows by example 5.2.

5.4. Random sequential models

This section identifies a large class of within menu ordinal models. The models studied in

this section all have a sequential structure. Faced with a menu A, the decision maker nar-

rows down choices sequentially using a sequence of choice rules/correspondences C1, ...,Cn

such that for each A ∈A : C1(A) ⊇ ... ⊇Cn(A). The set Ci (A) is interpreted as the set of alter-

natives that remains after step i . We assume that C1(A) = A for all A ∈ A , i.e. the decision
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maker starts out with all alternatives in each menu A. A stopping function is a function

π : {C1, ...,Cn}×A → [0,1] such that
∑n

i=1π(Ci , A) = 1. Thus, the stopping function gives the

probability by which the decision maker stops at a particular step of her narrowing down

process.

Definition 5.1. A stochastic choice function ρ is a Random sequential rule (RSR) if there is a

finite set I = {1, ...,n}, choice correspondences (Ci )i∈I such that for each A ∈A : C1(A) ⊇ ... ⊇
Cn(A), and a stopping function π such that

ρ(a, A) = ∑
i∈I :a∈Ci (A)

π(Ci , A)

|Ci (A)| (7)

for all a ∈ A and A ∈A . /

Let C denote the set of all choice correspondences. Let S ⊆ 2C denote the set of all

{C1, ...,Cn} ∈ 2C such that {C1, ...,Cn} is sequential (i.e. C1(A) ⊇ ... ⊇ Cn(A)). A subset H ⊆ S

then corresponds to various restrictions put on the sequences {C1, ...Cn}. The model com-

posed of all SCFs with an RSM representation using a subset of correspondences {C1, ...,Cn} ∈
H is denoted by RSM(H ). By varying H we obtain various submodels of RSM.

Example 5.3. (Gradual pairwise comparison rule (GPCR)). Let H ⊆ 2C be such that {C1, ...,Cn} ∈
H if and only if there is preference P and an ordered partition X = {X1, ..., Xn−1} of P such

that C1(A) = A and for all 1 < k ≤ I : Ck (A) = {a ∈Ck−1(A) : ∀b ∈Ck−1(A), (b, a) ∉ Xk−1}. This is

a version of the GPCR considered in Dutta (2020). /

Example 5.4. (Sequentially rationalizable choice) Let H ⊆ 2C be such that {C1, ...,Cn} ∈ H

if and only if there is a sequence of asymmetric relations P1, ...,Pn such that C0(A) = A and

Ck (A) = {x ∈Ck−1(A) : yPk x for no y ∈Ck−1(A)}. Clearly, H ⊆S . This is a stochastic version

of sequentially rationlizable choice in Manzini and Mariotti (2007). /

Example 5.5. (Stochastic satisficing Simon (1955)) Let H ⊆ 2C be such that {C1, ...,Cn} ∈ H

if and only if there is a utility function u : X → R and parameters δ1 < ... < δn such that

Ci (A) = {a ∈ A : u(a) ≥ δi }. Such a collection {C1, ...,Cn} is clearly sequential, so H ⊆S . /

The following proposition shows that a large class of models are within menu ordinal.

Indeed, any choice of H gives an within menu ordinal model. As a corollary it follows that

the models in example 5.4 - 5.3 are all within menu ordinal. The proof of proposition 5.7 is

delegated to subsection A.3 of the appendix.

Proposition 5.7. Let H ⊆S . Then RSM(H ) is an within menu ordinal model (and hence an

ordinal model).
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6. Ordinality of the Luce model and related models

In this section we will look at ordinal properties of the Luce model and closely related mod-

els, such as the additive perturbed utility model (Fudenberg et al., 2015) and simple scalabil-

ity (Tversky, 1972).

6.1. Luce model

A cornerstone model of stochastic choice is the eponymous Luce model (Luce, 1959). It

postulates a utility function, where the choice probability of each alternative is proportional

to its utility. Formally, a positive stochastic choice function11 ρ has a Luce representation if

there is a non-negative utility function u : X →R such that:

ρ(a, A) = u(a)∑
b∈A u(b)

for all a ∈ A and A ∈ A . It is fairly well known that the Luce model is characterized by In-

dependence of Irrelevant Alternatives, stating that: ρ(a,A)
ρ(b,A) =

ρ(a,B)
ρ(b,B) for all a,b ∈ A ∩B . By this

property it is immediate that the Luce model is not ordinal.

Proposition 6.1. The Luce model is not an ordinal model.

Proof. We exhibit SCFs ρ and ρ′ such that (ρ,ρ′) is an ordinal data set, ρ ∈ Luce and ρ′ ∈
SCF \ Luce. Let X = {a1, a2, a3} and A = {{a1, a2, a3}, {a1, a2}} and let ρ be a Luce model

with utility function u defined by u(a1) = 1 and u(ai+1) = u(ai )+ 1
10 for all i ∈ {1,2}. Then

ρ(a1, {a1, a2}) = 10
21 . Define a stochastic choice function ρ′ such that ρ′(a1, {a1, a2}) = 100

201 and

ρ′(ai , {a1, a2, a3}) = ρ(ai , {a1, a2, a3}) for all i ∈ {1,2,3} then ρ′ is ordinally equivalent to ρ. But

it is clear that ρ′ is not a Luce rule as ρ′(a1,{a1,a2})
ρ′(a2,{a1,a2}) = 100

101 > 10
11 = ρ(a1,{a1,a2})

ρ(a2,{a1,a2}) =
ρ(a1,{a1,a2,a3})
ρ(a2,{a1,a2,a3}) =

ρ′(a1,{a1,a2,a3})
ρ′(a2,{a1,a2,a3}) .

As a corollary to the above result it follows that the Luce model is neither within menu

ordinal nor deterministic. The Luce model does in this sense not coop very well with mea-

surement error.

6.2. Additive perturbed utility model

The additive perturbed utility model studied and introduced by Fudenberg, Iijima, and Strza-

lecki (2015) can be thought of as a model of deliberate randomization. The decision maker

11An SCF ρ is positive if ρ(a, A) > 0 for all a ∈ A ∈A .
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randomizes by choosing the lottery over alternatives that gives the highest expected util-

ity subject to a perturbation cost. For simplicity of analysis, we will throughout this sec-

tion assume that ρ(a, A) > 0 for all a ∈ A and A ∈ A . A function c is a cost function if

c : [0,1] → R∪ {∞} is strictly convex and C 1 over (0,1) and limq→0 c ′(q) = −∞. A stochas-

tic function has an APU representation if:

{ρ(a, A)} = argmax
p∈∆(A)

∑
a∈A

[
u(a)p(a)− c(p(a))

]
.

Denote by APU the class of SCFs with an APU representation. From its definition it is not

obvious that such a model is ordinal. However, this is immediate once we appeal to the main

characterization result in Fudenberg, Iijima, and Strzalecki (2015).They characterize APUs

using a property called acyclicity that only impacts the ordinal ranking of choice probabili-

ties.

Proposition 6.2. The APU model is an ordinal model.

Proof. Call a pair of sequences (a1, A1), ..., (an , An) and (b1,B1), ..., (bn ,Bn) such that (a1, ..., an)

is a permutation of (b1, ...,bn) and (A1, ..., An) is a permutation of (B1, ...,Bn) admissible.

Acyclicity: There is no admissible sequence such that ρ(ai , Ai ) ≥ ρ(bi ,Bi ) for all i ∈
{1, ...,n −1} and ρ(an , An) > ρ(bn ,Bn).

It is clear that if a stochastic choice function ρ satisfies acyclicity and if ρ′ is an increasing

transformation of ρ then ρ′ satisfies acyclicity. Thus it follows that the APU model is ordinal.

6.3. Simple scalability

The simple scalability model (SSM) is formally a generalization of the Luce model. It was

first characterized in Tversky (1972). 12 To define it, we need some further notation. Define a

relation ≥m on Rm by x ≥m y if x1 ≥ y1 and xi ≤ yi for all i ∈ {2, ...,m}. Similarly, >m is defined

by x >m y if x 6= y and x ≥m y .

Definition 6.1. A stochastic choice function ρ has a simple scalability representation if there

is a scale u : X →R and for each 2 ≤ k ≤ n a function Fk such that for each A = {a1, ..., ak } with

|A| = k it holds that

ρ(a1, A) = Fk (u(a1), ...,u(ak )). (8)

12Suppes et al. (1989) corrects an issue with the definition of the simple scalability model presented in Tversky
(1972).
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Further, each Fk is strictly ≥k increasing, meaning that: Fk (x) ≥ Fk (y) if x ≥m y and Fk (x) >
Fk (y) if x >m y . /

Intuitively, a stochastic choice model is SSM if the alternatives in A can be scaled by a

utility function u such that any choice probability ρ(a, A) is a function F|A| of the scale values.

Denote the class of stochastic choice functions with a simple scalability representation by

SSM. Already from the definition of SSM, due to the functions Fk , it is quite clear that SSM is

an ordinal model.

Proposition 6.3. Simple scalability is an ordinal model.

Proof. Let (ρ,ρ′) be an ordinal data set such that ρ′ ∈ SSM. Then it follows by proposition 4.1

that there is a strictly increasing function v : [0,1] → [0,1] with v(0) = 0 and ρ = v ◦ρ′. Since

ρ′ ∈ SSM there is a scale u and there are strictly ≥k increasing functions F ′
k for 2 ≤ k ≤ n such

that equation (8) holds. Thus for each A = {a1, ..., ak } with |A| = k it holds that

ρ(a1, A) = v ◦ρ′(a1, A) = v ◦F ′
k (u(a1), ...,u(ak )).

To conclude, it suffices to show that Fk = v ◦F ′
k is strictly ≥k increasing for all 2 ≤ k ≤ n. But

this is immediate since v is strictly increasing.

Remark: Many of the popular binary stochastic choice models are ordinal.13 A binary

stochastic choice function is a function P : X × X → [0,1] such that P (a,b)+P (b, a) = 1 for

all a,b ∈ X . A binary stochastic choice function is Fechnerian if there is a utility function

u : X → R and non-decreasing function F : R→ R such that P (a,b) = F (u(a)−u(b)) for all

a,b ∈ X . It follows as a corollary to proposition 4.1 that Fechnerian models are ordinal.

6.4. Random attention models

There is by now a large literature focusing on stochastic choice models where individuals

only consider a subset of all available options and then choose a preference maximizing al-

ternative within the subset. Notable in this regard are the papers by Manzini and Mariotti

(2014); Brady and Rehbeck (2016); Cattaneo, Ma, Masatlioglu, and Suleymanov (2020). The

models in Manzini and Mariotti (2014); Brady and Rehbeck (2016) fail to be ordinal for much

the same reason as the Luce model fails to be ordinal. However, the recent random attention

model (RAM) by Cattaneo, Ma, Masatlioglu, and Suleymanov (2020) can indeed be shown to

be ordinal. 14

13I thank Jay Lu for bringing this to my attention.
14A proof is available from the author upon request.
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7. Non robust models

Not all models are robust to ordinal perturbations of data. For example, both the Luce and

RUM model fail to be ordinal (see section 5 and 6 for further details). Further, some models

that are immune to small amounts of mismeasurement fail to be immune to more severe

types of mismeasurement. Consider for example the additive perturbed utility model: it is

ordinal, but not within menu ordinal. This raises the question of how to test these models

using such data. For instance, since the Luce model is not ordinal, we know that an observed

violation of IIA is not sufficient to reject it. So the question is, which property is? Which

property needs to be violated by observed data to safely conclude that it cannot have been

generated by a Luce SCF? I.e. can we devise a test of the Luce model that minimizes the issue

of over rejection? Conversely, we know that the Luce model is subject to under rejection:

observed data may satisfy IIA, despite this not being the case for underlying behavior. Can

we devise a test of the Luce model, which eliminates the issue of under rejection?

In an attempt to address these queries we next introduce the notions of the robust closure

and robust interior of a model. Basing a test on the robust closure of a model addresses the

over rejection issue, whereas a test based on the robust interior of a model addresses the

under rejection issue. As we will see, there is trade-off between these notions, similar to the

well known trade-off between type I and type II errors in statistical hypothesis testing.

Robust closures of models. The robust closure of a model is the "smallest" robust model

containing a given model. As explained above, basing a test on the robust closure of a model

reduces the over rejection issue. A further motivation will follow the formal definition below.

Definition 7.1. The R robust closure of model M, denoted R[M], is the smallest R robust

model containing M. 15 The ordinal closure of model M, denoted O [M], is the smallest ordinal

model containing M. The within menu (deterministic) closure of model M is defined similarly

and denoted W [M] (D[M]). /

So why is knowledge about the robust closure of a model useful? Consider the Luce

model again. For expositional purposes, assume that measurement error is such that data is

ordinal. An observed violation of IIA is then not necessarily a violation of the Luce model. By

basing a test of the Luce model on this property, the researcher may end up over rejecting the

Luce model (i.e. it may happen that ρ ∉ M and ρ∗ ∈ M). However, suppose that the researcher

bases a test of the Luce model on its ordinal closure and rejects the model whenever ρ ∉O [M].

15Formally, R[M] is the intersection of all robust models that contain M. It is easily verified that robustness is
preserved under intersections. Note also that SCF is an R robust model, so the robust closure of a model is a
well defined notion.
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This would eliminate the under rejection issue. Since, measurement error is such that (ρ,ρ∗)

is an ordinal data set, if ρ ∉ O [M] then it must be that ρ∗ ∉ M. Thus it can never be the case

that ρ ∉O [M] and ρ∗ ∈ M.

Robust interiors of models. Under rejection may still be an issue when basing a test of a

model on its robust closure. I.e. the researcher may observe ρ ∈R[M]\Mwhile ρ∗ ∉ M. If under

rejection is considered a concern one could similarly consider the robust interior of a model

M. This is the largest robust model contained in M.

Definition 7.2. The R robust interior of model M, denoted R◦[M], is the largest R robust

model contained in M.16 The ordinal interiror of model M, denoted O ◦[M], is the largest or-

dinal model contained in M. The within menu (deterministic) interior of model M is defined

similarly and denoted W ◦[M] (D◦[M]). /

Basing a test on the robust interior of a model addresses the under rejection issue. For

non-robust models we have that the robust interior of model M is a strict subset of M. Suppose

that the researcher believes that measurement error is such that any pair of SCFs (ρ,ρ∗) ∈R

is conceivable. If the researcher bases a test of model M on its robust interior, she will be

inclined to reject model M whenever ρ∗ ∉ M since then ρ ∉R◦[M] I.e. it may never happen that

ρ∗ ∉ M and ρ ∈R◦[M].

8. Calculating robust closures/interiors of models

We will focus our discussion in this section around various types of ordinal data. The notions

in section 7 will be illustrated by calculating the robust closures/interiors of a few models of

choice. Our main focus will be on the random utility model and the Luce model due to their

non ordinal nature.

8.1. Random utility model

Let us first consider the random utility model. As described above RUM is not an ordinal

model. Thus, it may be of interest to know exactly what the ordinal properties of it are. I.e.

suppose that underlying population behavior ρ∗ is described by a RUM, what testable re-

strictions (if any) does the random utility model impose on observed data ρ in a data set

(ρ,ρ∗)? And conversely, observing ρ when is ρ∗ consistent with a RUM?

16More formally, R◦[M] is the union of all robust models contained in M. Note that the union of an arbitrary
collection of robust models is robust, i.e. this operation is preserved under unions.
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Ordinal closure of RUM. We next characterize the ordinal closure of RUM. The main prop-

erty is called cancellation and is similar to cancellation properties appearing in the litera-

ture on subjective probability Kraft, Pratt, and Seidenberg (1959). Call a pair of sequences

(a1, A1), ..., (an , An) and (b1,B1), ..., (bn ,Bn) admissible if there are natural numbers (ki )n
i=1 s.t.∑n

i=1 ki 1P (ai ,Ai )(P ) ≤∑n
i=1 ki 1P (bi ,Bi )(P ) for all P ∈P .

Cancellation (C): There is no admissible sequence such that ρ(ai , Ai ) ≥ ρ(bi ,Bi ) for all

i ∈ {1, ...,n} and ρ(an , An) > ρ(bn ,Bn).

To understand cancellation, consider some of its implications. Cancellation implies the well-

known monotonicity/regularity property requiring that for all a ∈ X and A,B ∈ A : if A ⊆ B

then ρ(a, A) ≥ ρ(a,B). Monotonicity alone is however not sufficient to characterize O [RUM].17

Finding a "simple" behavioral characterization of ordinal data sets described by random util-

ity models would be desirable. But this is a challenging problem, related to that of finding a

behavioral characterization of the random utility model (which to date is open).

Proposition 8.1. A stochastic choice function ρ satisfies cancellation if and only if ρ ∈O [RUM].

The proof of proposition 8.1 uses a rational version of Farkas’ lemma and is delegated

to the appendix. 18 An implication of proposition 8.1 is that the random utility model is

"testable" with ordinal data. I.e. there are realizations of choices ρ that are inconsistent with

RUM (ρ ∉O [RUM]). Thus, at least in theory, the model can be falsified using ordinal data.

Within menu properties of RUM: Our next result demonstrates that distortion of data

could be a great concern for non ordinal models. It shows that the testable implications of

the random utility model are vacuous for quite mild forms of measurement error. Thus some

care is needed when devising tests of non ordinal models in the presence of measurement

error.

We show that there for every stochastic choice function ρ is a RUM µ such that the rank-

ing of alternatives induced by the RUM coincides with the ranking of ρ in every menu A.

This type of data is hence not rich enough to test the random utility model. The result also il-

lustrates the rich behavior consistent with a RUM. Indeed, rank the alternatives of any given

menu in any way you like and there is a RUM inducing exactly the same ranking of alterna-

tives! As we will see, this is in quite stark contrast to the Luce model, where the ranking of

alternatives within menus needs to be consistent with a fixed utility function.

17It is straightforward to verify that the following additivity property holds for any such data set: For all
A,B ,C ⊆ X with A ⊇ B if ρ(a, A) ≥ ρ(a,B) then not ρ(a,B ∪C ) > ρ(a, A∪C ).

18A main technical challenge in proving theorem 8.1 is that the collection of sets of the form P (a, A) is not
an algebra of sets and hence theorem 8.1 does not follow as a direct corollary to similar results in subjective
probability.
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Proposition 8.2. For every stochastic choice function ρ there is a RUM µ such that

ρ(a, A) ≥ ρ(b, A) ⇔ µ(P (a, A)) ≥µ(P (b, A))

for all a,b ∈ A and A ∈A .

The proof of proposition 8.2 is lengthy and deferred to the online appendix. A striking con-

sequence of proposition 8.2 is that there is no relation whatsoever between the rankings that

a RUM induces on different menus. For instance, it follows as a corollary to proposition

8.2 that there is a RUM such that ρ(a, A) > ρ(b, A) for all A ⊇ {a,b} with |A| > 2, but with

ρ(b, ab) > ρ(a, ab). As noted above, this behavior distinguishes the RUM from other models

of stochastic choice like the Luce model.

Ordinal interior of RUM: The ordinal interior of the random utility model is more difficult

to characterize. Note that the single crossing random utility model is ordinal and is a subset

of RUM. Thus we already now that the ordinal interior of RUM contains the single crossing

random utility model. Are they equal? Unfortunately not, one can show that the ordinal

interior of the random utility model is a strict superset of the collection of SCRUMs. To see

this, note that the uniform SCF ρu defined by ρu(a, A) = 1
|A| for all A ⊆ X has a random utility

representation. Further, one may check that {ρu} is an ordinal model. Hence SCRUM∪ {ρu} is

an ordinal model.19 A full characterization of the ordinal interior of the random utility model

is left for future research.

8.2. Luce model

In order to facilitate the discussion of the ordinal closure of the Luce model, we introduce

the following ordinal analogue of the Luce model.

Definition 8.1. A stochastic choice function ρ is ordinally rational if there is a utility function

u : X →R such that:

u(a) ≥ u(b) ⇔ ρ(a, A) ≥ ρ(b, A)

for all a,b ∈ A and for all A ∈A . Denote by OR the class/model of stochastic choice functions

that are ordinally rational. /

We do not obtain a full characterization of the of the ordinal closure of the Luce model.

However, the following proposition characterizes the within menu closure of the Luce model,

and hence provides an "upper bound" on its ordinal closure (note that the ordinal closure of

a model is a subset of its within menu closure).
19The uniform SCF ρ is not a SCRUM as it fails to satisfy the centrality axiom in Apesteguia et al. (2017).
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Proposition 8.3. The within menu closure of the Luce model equals the collection OR.

Proof. If ρ is in the within menu closure of the Luce model then there is a Luce rule ρ with

utility function u : X →R such that:

ρ(a, A) ≥ ρ(b, A) ⇔ u(a)∑
c∈A u(c)

≥ u(b)∑
c∈A u(c)

⇔ u(a) ≥ u(b).

By the equivalences above it hence follows that ρ ∈ OR. If ρ ∈ OR then there is a utility function

u : X → R such that for all A ∈ A : (a, A) % (b, A) if and only if u(a) ≥ u(b). Using the second

equivalence above the claim then follows.

The within menu interior of the Luce model is also fairly straightforward to characterize.

It coincides with the singleton set {ρu} where ρu is the uniform SCF defined above.

Proposition 8.4. The within menu interior of the Luce model equals {ρu}.

Proof. It is straightforward to check that {ρu}, where ρu is the uniform SCF, is an within menu

ordinal model. Next, assume that there is some ordinal model M that is a subset of the Luce

model and that is such that M strictly contains {ρu}. Let ρ ∈ M\ {ρu}. Since ρ is a non-uniform

Luce rule there is a utility function u : X → (0,∞) with u(a) > u(b) for some a,b ∈ X and such

that ρ(a, A) = u(a)∑
b∈A u(b) for all a ∈ A and A ⊆ X . Since u(a) > u(b) it follows that ρ(a, ab) >

ρ(b, ab). Let ε > 0 be such that ρ(a, ab)− ε > ε+ρ(b, ab). Define a new SCF ρ′ such that

ρ′(·, A) = ρ(·, A) for all A ⊆ X with A 6= {a,b} and set ρ′(a, ab) = ρ(a, ab)− ε and ρ′(b, ab) =
ρ(b, ab)+ ε. Then (ρ,ρ′) is an within menu data set. However ρ′ is not a Luce SCF, since
ρ′(a,ab)
ρ′(b,ab) =

ρ(a,ab)−ε
ρ(b,ab)+ε 6=

ρ(a,B)
ρ(b,B) =

ρ′(a,B)
ρ′(b,B) .

For testing purposes the properties satisfied by the within menu interior of the Luce

model can be considered vacuous. Only a non-generic subset of Luce rules satisfy this prop-

erty. Thus, when (ρ,ρ∗) is an within menu data set, it is virtually impossible to explain un-

derlying choices using a Luce rule. It is only when ρ = ρu that also underlying choices ρ∗

are explained by the Luce model. Conversely, the researcher can rule out the Luce model

as a proper description of within menu data whenever ρ is not ordinally rational (ρ ∉ OR) as

underlying choices ρ∗ must violate IIA then.

9. Discussion

9.1. Moment restricted data

Our main discussion has so far been focused on restrictions on measurement error that are

such that observed choices are ordinally related to underlying choices. As indicated before,
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the framework developed in this paper may also be of use when considering other com-

mon restrictions R on measurement error. As an illustration, this section discusses a sit-

uation, where the researcher believes that data is subject to various moment restrictions

on measurement error. Such restrictions are quite extensively discussed in an economet-

ric/statistical literature dealing with measurement error (see e.g. Aguiar and Kashaev (2018)).

Formally, a function g : X → Rd is called a moment function. This function can be thought

of as encoding information about the levels of different attributes of alternatives x in X .

Roughly speaking, moment restricted data is such that average measurement error within

each menu is zero.

Definition 9.1. A data set (ρ,ρ∗) such that:

∑
a∈A

g (a)ρ(a, A) = ∑
a∈A

g (a)ρ∗(a, A) (9)

for all A ∈A is called a data set subject to moment condition g . /

Since ε(a, A) = ρ(a, A)−ρ∗(a, A) for all a ∈ A and A ∈ A , equation (9) can equivalently

be thought of as a moment condition imposed on measurement error ε. A type of moment

restricted data is studied further in Ahn et al. (2018). However, they consider a setting where

the grand set of alternatives X is a compact subset ofRn and where g (x) = x for all x ∈ X . This

corresponds to a situation where the researcher only has access to one (the first) moment

(average choice data).

Suppose that we have access to data subject to moment condition g on measurement

error, what can we say about underlying behavior? Generally such data is quite sparse. The

more moments we have access to, the more we can say about underlying behavior. An av-

erage choice data set as in Ahn et al. (2018) is generally not as rich as stochastic choice data.

But, if we have access to sufficiently many moments then this is the case. We will next try to

formalise this intuition. Basically, our next result is a reformulation of the statistical result

which says that a distribution with finite support is completely determined by its moments.

Before stating it we need to introduce some more terminology. A moment function g is a

spanning moment function if the vectors (g (x))x∈X are linearly independent (since the range

of g is a subset of Rd this in particular implies that d ≥ n).

Example 9.1. Let X be a finite set and u : X → R a utility/scale function. Define g (x) =
(u(x),u(x)2, ...,u(x)d ) for all x ∈ X , then

∑
a∈A g (a)ρ(a, A) gives the first d moments w.r.t. u in

menu A. A necessary and sufficient condition for g to be spanning is that u is injective (i.e.

u(x) 6= u(y) for all x, y ∈ X ). 20 /

20This can be shown by noticing that the matrix obtained by "stacking" the vectors g (x) =
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Proposition 9.1. Let g be a spanning moment function. If (ρ,ρ∗) is a data set subject to mo-

ment condition g then ρ = ρ∗.

Proof. Let (ρ,ρ∗) be subject to moment condition g . Then
∑

a∈A g (a)ρ(a, A) =∑
a∈A g (a)ρ∗(a, A),

so
∑

a∈A g (a)[ρ(a, A)−ρ∗(a, A)] = 0. By linear independence of the vectors (g (a))a∈A it then

follows that ρ(a, A) = ρ∗(a, A) for all a ∈ A.

In words, knowing the first n moments of ρ∗ is equivalent to knowing the entire under-

lying distribution. As an immediate corollary to the proposition above it follows that any

model is robust to measurement error subject to a spanning moment condition g . For-

mally, given a moment function g let Rg denote the subset of pairs of SCFs (ρ,ρ∗) with∑
a∈A g (a)ρ(a, A) =∑

a∈A g (a)ρ∗(a, A) for all A ∈A .

Corollary 9.2. Let g be a spanning moment function. Then every model M is Rg robust.

This implies that moment restricted data (w.r.t. some spanning moment function) can be

used as an alternative empirical primitive to stochastic choice data. To illustrate this point

we next provide a characterization of the Luce rule in terms of moment restricted data. Our

characterization is similar to the average choice characterization of the Luce rule in Ahn et al.

(2018) and uses a version of their path independence axiom. A notable difference between

our characterization and theirs is that we assume a richer data set in the sense that the re-

searcher has access to several moments, not just one. In contrast to moment restricted data,

average choice data as in Ahn et al. (2018) does not necessarily uniquely pin down the un-

derlying SCF ρ∗. To state the path independence property characterizing the Luce rule, let

co(A) denote the convex hull of a set A ⊆ Rd (the intersection of all convex sets containing

A). Further, let Eρ[g |A] =∑
a∈A g (a)ρ(a, A) for all A ∈A .

Plott’s partial path independence w.r.t. g : Let g be a moment function. A stochastic choice

function ρ satisfies Plott’s partial path independence w.r.t. g if

Eρ[g |A∪B ] ∈ co{Eρ[g |A],Eρ[g |B ]}

for all disjoint A,B ∈A .

The axiom can be seen as a generalization of Plott’s path independence axiom, which

roughly speaking requires the choice from a union of two disjoint sets to be equal the choice

from either one of those two sets. For an extensive discussion of this property we refer the

(1,u(x),u(x)2, ...,u(x)d ) next to each other is an Vandermonde matrix, and such a matrix has non zero determi-
nant if and only if u is injective.
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interested reader to Ahn et al. (2018). We are now ready to state our characterization of the

Luce rule.

Proposition 9.3. Let g be a spanning moment function. Then a positive stochastic choice

function ρ is a Luce rule if and only if it satisfies Plott’s partial path independence w.r.t. g .

Proof. Let b ∈ A and A ⊆ X . Our aim is to show that ρ(a,A)
ρ(c,A) =

ρ(a,A\b)
ρ(c,A\b) for all c ∈ A \ b, which in

particular (by induction) implies that IIA holds. Define fg (A) = Eρ[g |A]. Note that

fg (A) =α fg (b)+ (1−α) fg (A \ b) =

=αg (b)+ (1−α)
∑

c∈A\b
g (c)ρ(c, A \ b).

Further, we know that fg (A) = ∑
c∈A g (c)ρ(c, A) = ρ(b, A)g (b)+ (1−α)

∑
c∈A\b g (c)ρ(c, A).

Hence, we have thatρ(b, A)g (b)+(1−α)
∑

c∈A\b g (c)ρ(c, A\b) =αg (b)+(1−α)
∑

c∈A\b g (c)ρ(c, A)

and rearranging the later expression gives:

(ρ(b, A)−α)g (b)+ ∑
c∈A\b

[(1−α)ρ(c, A \ b)−ρ(c, A)]g (c) = 0.

By linear independence of the vectors g (c), it then follows that (1−α)ρ(c, A \ b)−ρ(c, A) = 0

for all c ∈ A \b, which in particular implies that ρ(a,A)
ρ(c,A) =

ρ(a,A\b)
ρ(c,A\b) for all c ∈ A \b. The proof that

every Luce rule ρ satisfies Plott’s partial path independence w.r.t. g is straightforward and

omitted.

9.2. Comparative robustness

Previous sections discussed various notions of robustness, depending on the extent and type

of measurement error that data is subject to. From the perspective of a researcher it would be

useful if models could be assessed based on their degree of robustness. In other words, how

sensitive is a particular model to measurement error? Is the SCRUM more robust to mea-

surement error than the random utility model? More generally, is model M more robust than

model M′? Among a colleciton of models {M1, ...,Mn} considered as plausible by the researcher

which one is the most robust, and in this sense most suitable for empirical analysis?

To answer such questions, we next briefly outline a method to compare the robustness of

various models of choice. A natural way to define such a comparative notion of robustness is

to say that a model M is more robust than another model M′ if and only if M is R robust for all

restrictions R for which M′ is R robust. However, an undesirable feature of this order is that
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any pair of models M,M′ are incomparable according to it.21 To meaningfully compare pairs

of models we need to consider more specific restrictions on measurement error. Given our

focus on ordinal models, we will consider an order which compares the degree of ordinality

of different models. To this end, define a relation À by

MÀ M′ ⇔ for all restrictions R with O ⊆R ⊆D : R[M′] = M′ ⇒ R[M] = M.

The relation above thus requires measurement error to be restricted such that O ⊆R ⊆D.

A data set (ρ,ρ∗) ∈ R with O ⊆ R ⊆ D contains more information than a deterministic data

set, but less so than an ordinal data set, and can in this sense be viewed as a type of ordinal

data set. Hence, model M can arguably be viewed as "more ordinal" than model M′ if MÀ M′.
Using this order we are able to formally compare the degree of ordinality of the different

random utility models considered in section 5.

Proposition 9.4. We have that dRUM À SCRUM À RUM.

Proof. First, note that RUM is not R robust for any O ⊆ R ⊆ D. Secondly, we note that if

we define A = {(ρ,ρ∗) : ρ(a, A) ≥ ρ(a,B) ⇔ ρ∗(a, A) ≥ ρ∗(a,B) for all a ∈ X and A,B ∈ A }

then SCRUM is robust w.r.t. A (the proof is identical to the proof that SCRUM is ordinal).

Hence SCRUM À RUM. Finally, we note that since dRUM is deterministic if follows that

dRUM is R robust for all O ⊆ R ⊆ D. Thus, since À is a transitive relation, it follows that

dRUM À SCRUM À RUM.

It would also be interesting to compare other models of choice using the above ordering.

Is for instance the GPCR model more ordinal than the APU model? Also note that the above

notion of comparative ordinality is one out of several plausible ways in which a comparative

notion of ordinality/robustness could be defined. We leave a more detailed study of these

issues for future research.

9.3. Classifying properties of SCFs

The framework developed in this paper may be used to classify properties of stochastic

choice models. We identify with each property P a subset of SCFs satisfying this property.

As an example, the well known monotonicity/regularity property, requiring that ρ(a, A) ≥
ρ(a,B) for all A ⊆ B and a ∈ A, is identified with the subset of SCFs satisfying monotonic-

ity. In this way, properties and models (as defined in the previous section) are in one-to-one

21This is because this relation is an extremely conservative ordering that takes all restrictions on measure-
ment error into account.
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correspondence with each other. Each property corresponds to a subset P⊆ SCF as follows:

P := {ρ ∈ SCF : ρ satisfies property P}.

Definition 9.2. A property P is an ordinal (within menu ordinal, deterministic) property if

the model P is an ordinal (within menu ordinal, deterministic) model. /

Viewed in this way, a set of properties characterize a model if and only if their intersection

equals the model.

Definition 9.3. We say that a model M is characterized by using a set of properties P1, ...,Pn if

M=
k⋂

i=1
Pi .

/

Every ordinal (within menu ordinal, deterministic) model is in a trivial way characterized

using ordinal properties, take P = M. Conversly, if a model is characterized using a set of

ordinal (within menu ordinal, deterministic) properties P1, ...,Pk then, since the intersection

of ordinal (within menu ordinal, deterministic) properties is ordinal (within menu ordinal,

deterministic), it follows that M is an ordinal model. We have the following observation:

Proposition 9.5. A model M is characterized by a collection of ordinal (within menu ordinal,

deterministic) properties P1, ...,Pn if and only if M is ordinal (within menu ordinal, determin-

istic).

Thus, if an analyst knows that a model is ordinal, then this suggests that there is a char-

acterization of the model entirely in terms of ordinal properties. Say that a researcher wishes

to take a model to data and test it. If it is known that a model could be expressed using only

ordinal properties, then this is convenient for the analyst, as less precise information about

choice probabilities is required in testing the properties of the model. As an example, con-

sider the dual Random Utility Model which is a deterministic model. Due to dRUM being

deterministic there ought to be a characterization of it using deterministic properties. This

is indeed correct, as the properties characterizing dRUM in Manzini and Mariotti (2018) can

all be shown to be deterministic properties.

9.4. What are "reasonable" restrictions on measurement error?

This paper has mainly studied restrictions on measurement error where observed choices

are ordinally related to underlying choices. Are these reasonable restrictions? As discussed
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before, this depends a bit on the application at hand and the researcher’s knowledge on mea-

surement error. For instance if measurement error is "small" then the ordinal assumption

seems like a quite good approximation, whereas if measurement error is large then deter-

ministic data is a reasonable "lower bound" on the information available to the analyst. An

alternative way to approach the issue of deciding on a reasonable restriction on measure-

ment error is through the axiomatic approach. I.e. if R ought to measure the extent and

type of measurement error in data, what properties on R are then reasonable to assume?

Note that R can be viewed as a binary relation on the set of all SCFs. A similar approach

is undertaken in Balakrishnan et al. (2021) to infer choice correspondences (what they call

"Fishburn imputations") from stochastic choice data. We leave it for future research to iden-

tify reasonable conditions on R characterizing various restrictions on measurement error

(such as ordinal/moment restrictions).

A. Proofs

A.1. Proof of proposition 2.1

Proof. Let SCF∗ denote the subset of SCFs such that ρ(a, A) 6= ρ(b,B) for all a ∈ A and b ∈ B

and A,B ∈ A . This set has measure one when SCF is equipped with the Lebesgue measure

restricted to SCF (and normalized to equal one). Let ρ ∈ SCF∗. Then ρ(a, A) 6= ρ(b,B) for all

a ∈ A and b ∈ B and A,B ∈A . Let

ε= min
a∈A,b∈B ,A,B∈A :ρ(a,A)>ρ(b,B)

∣∣ρ(a, A)−ρ(b,B)
∣∣ .

Let ρ′ be an SCF such that ||ρ′−ρ|| < ε
4 . It is then clear that (ρ,ρ′) is an ordinal data set.

A.2. Proof of proposition 5.2

Proof. It suffices to show that if A satisfies the premises of the proposition, then an SCF is

a random utility model if and only if it satisfies monotonicity, i.e. for all a ∈ A ⊆ B : ρ(a, A) ≥
ρ(a,B). The set of all SCFs satisfying monotonicity is clearly an ordinal model. The proof that

the random utility model is characterized by monotonicity on this domain is straightforward.

Suppose that ρ satisfies monotonicity. Note that the collection H = {P (b, X )∩P (a, X \ b) :

b ∈ X , a ∈ X \b} forms a partition of P . Moreover, P (b, X ) =∪a∈X \bP (b, X )∩P (a, X \b) and

P (a, X \b) = [P (a, X )∪P (b, X )]∩P (a, X \b) = [P (a, X )∩P (a, X \b)]∪[P (b, X )∩P (a, X \b)],

so for each A ∈ A we have that P (a, A) can be written as a disjoint union of members from

the partition H .
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Define µ on P (b, X )∩P (a, X \b) by setting µ(P (b, X )∩P (a, X \b)) = ρ(a, X \b)−ρ(a, X ).

To show that µ is a measure (on the algebra generated by the partition H ) it suffices to

show that µ is positive on H and that µ sums to one. By monotonicity of ρ it follows that

µ(P (b, X )∩P (a, X \ b)) = ρ(a, X \ b)−ρ(a, X ) ≥ 0, so µ is positive. Next note that

∑
b∈X

∑
a∈X \b

µ(P (b, X )∩P (a, X \ b)) = ∑
b∈X

∑
a∈X \b

ρ(a, X \ b)−ρ(a, X ) = ∑
b∈X

ρ(b, X ) = 1.

Thusµ is a measure. Finally, we have for all b ∈ X : ρ(b, X ) =∑
a∈A\b

(
ρ(a, X \ b)−ρ(a, X )

)=∑
a∈A\bµ(P (b, X )∩P (a, X \ b)) =µ(P (b, X )). Further, since we have P (a, X \ b) =P (a, X )∪

(P (b, X )∩P (a, X \ b)) it follows by additivity ofµ thatµ(P (a, X \b))−µ(P (a, X )) =µ(P (b, X )∩
P (a, X \ b)). Thus, it follows that ρ(a, X \ b) = ρ(a, X \ b)−ρ(a, X )+ρ(a, X ) = µ(P (b, X )∩
P (a, X \ b))+µ(P (a, X )) =µ(P (a, X \ b))−µ(P (a, X ))+µ(P (a, X )) =µ(P (a, X \ b)).

A.3. Proof of proposition 5.7

Proof. Let ρ ∈ RSM and ρ′ be an SCF s.t. (ρ,ρ′) is an within menu data set. Since ρ ∈ RSM(H )

there is a finite set I = {1, ...,n}, a sequential collection of choice correspondences {C1, ...,Cn} ∈
H and a stopping function π such that ρ(a, A) = ∑

i∈I :a∈Ci (A)
π(Ci ,A)
|Ci (A)| for all a ∈ A and A ∈ A .

We claim that there is a stopping function π′ such that ρ′ is an RSM with the same sequential

collection {C1, ...,Cn} as ρ.

Let i1 be the smallest index such that Ci1 (A) \ Ci1+1(A) is non empty. By induction, one

can show that there are indices {i1, ..., im} such that ik+1 is the smallest index in {ik +1, ...,n}

with Cik (A) \ Cik+1 (A) 6= ; for all k < m and Ci (A) = Cim (A) for all i ≥ im . Pick a sequence of

alternatives {ai1 , ..., aim } ⊆ A such that aik ∈ Cik (A) \ Cik+1 (A) for all k < m and aim ∈ Cim (A).

Note that ρ(aik+1 , A) ≥ ρ(aik , A) for all k ≥ 1, implying that ρ′(aik+1 , A) ≥ ρ′(aik , A) for all k ≥ 1.

Thus, it is possible to define a function π′ such that π′(Ci , A) ≥ 0 for all i ∈ I and such that

i1∑
i=1

π′(Ci , A)

|Ci1 (A)| = ρ′(ai1 , A)

ik+1∑
i=ik+1

π′(Ci , A)

|Cik+1 (A)| = ρ
′(aik+1 , A)−ρ′(aik , A)

for all k < m. We next check that π′ is a stopping function. To see this note that:

∑
i∈I
π′(Ci , A) = |Ci1 (A)|ρ′(ai1 , A)+

m−1∑
k=1

|Cik+1 (A)|[ρ′(aik+1 , A)−ρ′(aik , A)] =
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=
m−1∑
k=1

|Cik (A) \Cik+1 (A)|ρ′(aik , A)+|Cim (A)|ρ′(aim , A) = ∑
a∈A

ρ′(a, A) = 1.

The last equality follows since ρ′(a, A) = ρ′(aik , A) for all a ∈Cik (A)\Cik+1 (A). We finally check

that ρ′ satisfies the defining equation (7) of an RSM. Let a ∈ A. Then either there is an index

k < m such that a ∈ Cik (A) \ Cik+1(A) or otherwise a ∈ Cim (A). Hence, by definition of an

RSM, it follows that ρ(a, A) = ρ(aik , A) for some k ≤ m. Thus we have ρ′(a, A) = ρ′(aik , A) =∑ik
i=1

π′(Ci ,A)
|Ci (A)| =∑

i∈I :a∈Ci (A)
π′(Ci ,A)
|Ci (A)| . This proves the claim.

A.4. Rational version of Farkas’ lemma

The proof of theorem 8.1 is an application of a rational version of Farkas’ Lemma. The lemma

below follows as a corollary to theorem 1.6.1. in Stoer and Witzgall (2012) (see also Echenique

and Saito (2015) who applies this result in a different context). Alternatively, the result can

be derived from theorem 3.2 in Fishburn (1973) (see also Chambers and Echenique (2014)

for an application of this result).

Lemma A.1. Let A be an n ×m matrix, B an n × l matrix and C be an n ×k matrix all with

rational entries. Then exactly one of the following statements is true.

1. There are x ∈Qm , y ∈Ql and z ∈Qk such that Ax +B y +C z = 0, x ≥ 0, y ≥ 0 and z > 0.

2. There is an x ∈Qn such that AT x ≥ 0, B T x ≥ 0 and C T x À 0.

A.5. Proof of theorem 8.1

To prove theorem 8.1 we will show a more general result from which it follow as corollary.

Call a triple (X ,A ,%) where % is a binary relation on X ×A a data set. Binary relation % is

non-trivial, if there are (a, A), (b,B) ∈ X ×A with (a, A) Â (b,B). Let S denote a subset of the

collection of choice functions on A , i.e. S ⊆C . For all A ⊆ X and a ∈ A denote by S (a, A) =
{c ∈ S : c(A) = a}. Call a pair of sequences (a1, A1), ..., (an , An) and (b1,B1), ..., (bn ,Bn) S -

admissible if (1) ai ∈ Ai and bi ∈ Bi for all i , (2) there are natural numbers (ki )n
i=1 such that∑n

i=1 ki 1S (ai ,Ai )(c) ≤∑n
i=1 ki 1S (bi ,Bi )(c) for all c ∈S .

S -Cancellation (C): There is no S - admissible sequence such that (ai , Ai ) % (bi ,Bi )

for all i ∈ {1, ...,n} and (an , An) Â (bn ,Bn).

Theorem A.2. A non-trivial data set (X ,A ,%) satisfies S - cancellation if and only if there is

a measure µ on S such that

(a, A) Â (b,B) ⇒ µ(S (a, A)) >µ(S (b,B)) (10)
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(a, A)% (b,B) ⇒ µ(S (a, A)) ≥µ(S (b,B)) (11)

for all (a, A), (b,B) ∈ X ×A .

Proof. Let (X ,A ,%) be a imprecise data set such that S -cancellation and non-triviality holds.

For all (a, A), (b,B) ∈ X ×A with (a, A) % (b,B) define a vector x[(a, A), (b,B)] = 1S (a,A) −
1S (b,B). Define a matrix A by letting the columns correspond to the vectors x[(a, A), (b,B)].

Let B be the identity matrix, i.e. B = I . Define for all (a, A), (b,B) ∈ X ×A with (a, A) Â (b,B) a

vector y[(a, A), (b,B)] = 1S (a,A)−1S (b,B). Define a matrix C by letting its columns correspond

to the vectors y[(a, A), (b,B)]. Since (X ,A ,%) is non-trivial there is at least one such vector

y[(a, A), (b,B)].

STEP 1: We first claim that there are no x ∈Qm , y ∈Ql and z ∈Qk such that Ax+B y +C z = 0,

x ≥ 0, y ≥ 0 and z > 0.

Suppose that there are x ∈Qm , y ∈Ql and z ∈Qk such that Ax +B y +C z = 0, x ≥ 0, y ≥ 0 and

z > 0. Hence there are positive rational numbers x1, ...xm y1, ....yl and positive z1, ..., zk with

z j > 0 for some j ≥ 1 such that

n∑
i=1

xi x[(ai , Ai ), (bi ,Bi )]+
l∑

i=1
yi ei +

k∑
i=1

zi y[(ci ,Ci ), (di ,Di )] = 0,

where (ai , Ai )% (bi ,Bi ) for all i ∈ {1, ...,m} and (ci ,Ci ) Â (di ,Di ) for all i ∈ {1, ...,k}.

Multiplying the expression above with least common denominators it follows that there

are integers k1, ...,km s1, ..., sl and r1, ...,rk such that

n∑
i=1

ki x[(ai , Ai ), (bi ,Bi )]+
l∑

i=1
si ei +

k∑
i=1

ri y[(ci ,Ci ), (di ,Di )] = 0,

and this further implies that

n∑
i=1

ki x[(ai , Ai ), (bi ,Bi )]+
k∑

i=1
ri y[(ci ,Ci ), (di ,Di )] ≤

n∑
i=1

ki x[(ai , Ai ), (bi ,Bi )]+
l∑

i=1
si ei +

k∑
i=1

ri y[(ci ,Ci ), (di ,Di )] = 0

The latter inequality holds if and only if

n∑
i=1

ki
[
1S (ai ,Ai ) −1S (bi ,Bi )

]+ k∑
i=1

ri
[
1S (ci ,Ci ) −1S (di ,Di )

]≤ 0.
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But S -cancellation now implies that (di ,Di )% (ci ,Ci ) for all i ∈ {1, ...,k}. A contradiction.

By lemma A.1 it follows that there is an x ∈Qn such that AT x ≥ 0, B T x ≥ 0 and C T x À 0.

STEP 2: Define a set function by:

µ(R) = x ·1R

x ·1S

for all R ⊆S . We next show that µ is a probability measure. To do this we need to check that

µ(·) is a positive, finitely additive measure and that µ(S ) = 1. It is clear that µ(S ) = x·1S

x·1S
= 1.

Additivity follows since for all disjoint R,S ⊆S we have µ(R ∪S) = x·1R∪S
x·1S

= x·[1R+1S ]
x·1S

= x·1R
x·1S

+
x·1S
x·1S

= µ(R)+µ(S). Positivity follows by noting that B T x ≥ 0 implies that x ≥ 0. Using this

observation and that the inner product of two positive vectors is a positive scalar it follows

that µ(R) = x·1R
x·1S

≥ 0 for all R ⊆S . Thus µ is a probability measure.

STEP 3: For all (a, A), (b,B) ∈ X ×A : If (a, A) % (b,B) then µ(S (a, A)) ≥ µ(S (b,B)) and if

(a, A) Â (b,B) then µ(S (a, A)) >µ(S (b,B)).

If (a, A)% (b,B) then since AT x ≥ 0 it follows that x ·x[(a, A), (b,B)] ≥ 0 and hence x ·(1S (a, A)−
1S (b,B)) ≥ 0 implying that µ(S (a, A)) ≥ µ(S (b,B)). If (a, A) Â (b,B) then since C T x À 0 it

follows that x · x[(a, A), (b,B)] > 0 and hence x · (1S (a,A) − 1S (b,B)) > 0. Thus µ(S (a, A)) >
µ(S (b,B)).

Conversely, let (X ,A ,%) be a triple such that equation (10)-(11) holds. We show that S -

cancellation holds. Let (a1, A1), ..., (an , An) and (b1,B1), ..., (bn ,Bn) be such that (ai , Ai ) %

(bi ,Bi ) for all i ∈ {1, ...,n} and assume that there is a sequence of natural numbers (ki )n
i=1

such that

n∑
i=1

ki 1S (ai ,Ai )(c) ≤
n∑

i=1
ki 1S (bi ,Bi )(c)

for all c ∈S . Then taking expectations it follows that

n∑
i=1

kiµ(S (ai , Ai )) = Eµ

[
n∑

i=1
ki 1S (ai ,Ai )

]
≤ Eµ

[
n∑

i=1
ki 1S (bi ,Bi )

]
=

n∑
i=1

kiµ(S (bi ,Bi )). (12)

Note that (ai , Ai ) % (bi ,Bi ) implies that µ(S (ai , Ai )) ≥ µ(S (bi ,Bi )) for all i ∈ {1, ...,n}. If

(an , An) Â (bn ,Bn) thenµ(S (an , An)) >µ(S (bn ,Bn)). It then follows that
∑n

i=1 kiµ(S (ai , Ai )) >∑n
i=1 kiµ(S (bi ,Bi )). A contradiction to equation (12).

We now prove theorem 8.1. Let ρ be an SCF satisfying cancellation. Define a binary rela-

tion % on X ×A by (a, A)% (b,B) if and only if ρ(a, A) ≥ ρ(b,B). Since ρ satisfies cancellation
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it follows that % satisfies P -cancellation, where we recall that P is the set of all linear or-

ders. Hence, by theorem A.2 there is a measure µ on P such that for all (a, A), (b,B) ∈ X ×A :

(a, A) Â (b,B) ⇒ µ(P (a, A)) > µ(P (b,B)) and (a, A) % (b,B) ⇒ µ(P (a, A)) ≥ µ(P (b,B)).

Since, by construction, % is complete it then follows that (a, A) % (b,B) ⇔ µ(P (a, A)) ≥
µ(P (b,B)) for all (a, A), (b,B) ∈ X ×A . It thus follows that ρ ∈O [RUM].
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