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Abstract

This online appendix contains the rather lengthy proof of prosposition 8.4 in Petri

(2021).

0.1 Proof of proposition 6.3

In the following proofs we will use I as a shorthand for the set {1, ...,n}.

Lemma 0.1. Let A ⊆ X . If it holds that

∑
i∈I

ki 1P (ai ,A)(P ) ≤ ∑
i∈I

ki 1P (bi ,A)(P )

for all P ∈P then there is a P ∈P with

∑
i∈I

ki 1P (ai ,A)(P ) = ∑
i∈I

ki 1P (bi ,A)(P ).

Proof. Since
∑

i∈I ki 1P (ai ,A)(P ) ≤ ∑
i∈I ki 1P (bi ,A)(P ) for all P ∈ P it suffices to show that

there is a P ∈ P with
∑

i∈I ki 1P (ai ,A)(P ) ≥ ∑
i∈I ki 1P (bi ,A)(P ). To show this we note that∑

{i∈I :ai=b} ki−∑
{i∈I :bi=b} ki ≥ 0 for some b ∈ {a1, ..., an}. If not, then

∑
i∈I ki =∑

a∈{a1,...,an }
∑

{i∈I :ai=a} ki <∑
a∈{a1,...,an }

∑
{i∈I :bi=a} ki ≤∑

i∈I ki . A contradiction. Let b be such that
∑

{i∈I :ai=b} ki−∑
{i∈I :bi=b} ki ≥

0.Then if P ∈P (b, X ) it follows that

∑
i∈I

ki 1P (ai ,A)(P ) = ∑
{i∈I :ai=b}

ki ≥
∑

{i∈I :bi=b}
ki =

∑
i∈I

ki 1P (bi ,A)(P ).

The claim follows.
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Lemma 0.2. If it holds that

∑
i∈I

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P then there is a P ∈P with

∑
i∈I

ki 1P (ai ,Ai )(P ) = ∑
i∈I

ki 1P (bi ,Ai )(P ).

Proof. The proof is by induction on the number of distinct sets in A1, ..., An . The base case

A1 = .... = An = A for some A ⊆ X follows directly by lemma 0.1. As induction hypothesis

assume that the claim is true for all sequences A1, ..., An with k−1 distinct sets. Assume that

A1, ..., An is a sequence with k distinct sets such that

∑
i∈I

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P . Let b ∈ argmaxa∈{a1,...,an }

(∑
{i∈I :ai=a} ki −∑

{i∈I :bi=a} ki
)

then we have that
∑

{i∈I :ai=b} ki−∑
{i∈I :bi=b} ki ≥ 0. If not, then

∑
i∈I ki =∑

a∈{a1,...,an }
∑

{i∈I :ai=a} ki <∑
a∈{a1,...,an }

∑
{i∈I :bi=a} ki ≤∑

i∈I ki . A contradiction.

Thus
∑

{i∈I :ai=b} ki−∑
{i∈I :bi=b} ki ≥ 0. Let I (2) = {i ∈ I : b ∉ Ai } and note that

∑
i∈I \I (2) ki 1P (ai ,Ai )(P )−∑

i∈I \I (2) ki 1P (bi ,Ai )(P ) ≥ 0 for all P ∈P (b, X ). Further, by assumption, it holds that

∑
i∈I (2)

ki 1P (ai ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )

for all P ∈P . Rearranging the above expression we obtain

∑
i∈I (2)

ki 1P (ai ,Ai )(P )− ∑
i∈I (2)

ki 1P (bi ,Ai )(P ) ≤ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )− ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≤ 0

for all P ∈P (b, X ). This in particular implies that
∑

i∈I (2) ki 1P (ai ,Ai )(P )−∑
i∈I (2) ki 1P (bi ,Ai )(P ) ≤

0 for all P ∈P . Since (Ai )i∈I (2) is a sequence with k −1 distinct sets it follows by the induc-

tion hypothesis that there is a P ∈P with
∑

i∈I (2) ki 1P (ai ,Ai )(P ) =∑
i∈I (2) ki 1P (bi ,Ai )(P ). Since

b ∉ Ai for any i ∈ I (2) we w.l.o.g. assume that P ∈P (b, X ). Using this we obtain that

∑
i∈I

ki 1P (ai ,Ai )(P ) = ∑
i∈I (2)

ki 1P (ai ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≥

∑
i∈I (2)

ki 1P (bi ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P ) = ∑
i∈I

ki 1P (bi ,Ai )(P ).

The claim follows.
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Lemma 0.3. If it holds that

∑
i∈I

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P then it follows that

∑
{i∈I :ai=b}

ki −
∑

{i∈I :bi=b}
ki = 0

for all b ∈ X . This further implies that {a1, ..., an} = {b1, ...,bn}.

Proof. Let

b ∈ argmax
a∈{a1,...,an }

( ∑
{i∈I :ai=a}

ki −
∑

{i∈I :bi=a}
ki

)
then we have that

∑
{i∈I :ai=b} ki −∑

{i∈I :bi=b} ki ≥ 0.

CASE 1: Assume that
∑

{i∈I :ai=b} ki −∑
{i∈I :bi=b} ki > 0.

Let I (2) = I \{i ∈ I : b ∈ Ai }. Then it follows that
∑

i∈I \I (2) ki 1P (bi ,Ai )(P )−∑
i∈I \I (2) ki 1P (ai ,Ai )(P ) <

0 for all P ∈P (b, X ). Further, by assumption, it holds that

∑
i∈I (2)

ki 1P (ai ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )

for all P ∈P . Rearranging the above expression we obtain

∑
i∈I (2)

ki 1P (ai ,Ai )(P )− ∑
i∈I (2)

ki 1P (bi ,Ai )(P ) ≤ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )− ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) < 0

for all P ∈P (b, X ). This in particular implies that
∑

i∈I (2) ki 1P (ai ,Ai )(P )−∑
i∈I (2) ki 1P (bi ,Ai )(P ) ≤

0 for all P ∈P . It folllows that there is a P ∈P with
∑

i∈I (2) ki 1P (ai ,Ai )(P ) =∑
i∈I (2) ki 1P (bi ,Ai )(P ).

Since b ∉ Ai for any i ∈ I (2) we w.l.o.g. assume that P ∈P (b, X ). Using this we obtain that

∑
i∈I

ki 1P (ai ,Ai )(P ) = ∑
i∈I (2)

ki 1P (ai ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) >

∑
i∈I (2)

ki 1P (bi ,Ai )(P )+ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P ) = ∑
i∈I

ki 1P (bi ,Ai )(P ).

A contradiciton.

CASE 2: If
∑

{i∈I :ai=b} ki −∑
{i∈I :bi=b} ki = 0 then

∑
{i∈I :ai=a} ki −∑

{i∈I :bi=a} ki = 0 for all

a ∈ {a1, ..., an}. If not, then

∑
i∈I

ki =
∑

a∈{a1,...,an }

∑
{i∈I :ai=a}

ki <
∑

a∈{a1,...,an }

∑
{i∈I :bi=a}

ki ≤
∑
i∈I

ki .

Finally, we note that {a1, ..., an} = {b1, ...,bn}, since if b ∈ {a1, ..., an}\{b1, ...,bn} then
∑

{i∈I :ai=b} ki−
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∑
{i∈I :bi=b} ki > 0 and if b ∈ {b1, ...,bn}\{a1, ..., an} then

∑
{i∈I :ai=b} ki −∑

{i∈I :bi=b} ki < 0. A con-

tradiction again.

Lemma 0.4. Let A ⊆ X . If it holds that

∑
i∈I

ki 1P (ai ,A)(P ) ≤ ∑
i∈I

ki 1P (bi ,A)(P )

for all P ∈P then ∑
i∈I

ki 1P (ai ,A)(P ) = ∑
i∈I

ki 1P (bi ,A)(P ).

for all P ∈P .

Proof. This follows immediately by lemma 0.3.

Lemma 0.5. Let A1, ..., An ⊆ X . If it holds that

∑
i∈I

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P then

∑
i∈I

ki 1P (ai ,Ai )(P ) = ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P .

Proof. The claim is proven by induction on the number of distinct sets in the sequence

A1, ..., An (i.e. on the cardinality of {A1, ..., An}). The base case follows by lemma 0.5 above.

Assume that the claim is true for all sequences with k −1 distinct sets in A1, ..., An . Assume

that A1, ..., An is a sequence with k distinct sets such that

∑
i∈I

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I

ki 1P (bi ,Ai )(P )

for all P ∈P . By lemma 0.3 it follows that

∑
{i∈I :ai=b}

ki −
∑

{i∈I :bi=b}
ki = 0

for all b ∈ X and moreover {a1, ..., an} = {b1, ...,bn}.

There are i , j ∈ {1, ...,n} with Ai \ A j 6= ;. Let b ∈ Ai \ A j and consider the set of orders

P ∈P with b as their top element in X , i.e. P (b, X ).

Let I (2) = {i ∈ I (1) : b ∉ Ai }. If b ∉ {a1, ..., an} then
∑

i∈I \I (2) ki 1P (ai ,Ai )(P ) = 0 =∑
i∈I \I (2) ki 1P (bi ,Ai )(P ).

If b ∈ {a1, ..., an} then
∑

i∈I \I (2) ki 1P (ai ,Ai )(P ) =∑
{i∈I :ai=b} ki =∑

{i∈I :bi=b} ki =∑
i∈I \I (2) ki 1P (bi ,Ai )(P ).

It hence follows that

∑
i∈I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )
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for all P ∈P (b, X ).

But since b ∉ Ai for any i ∈ I (2) this implies that

∑
i∈I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )

for all P ∈P .

Since (Ai )i∈I (2) is a sequence with k−1 distinct sets it follows by the induction hypotheis

that
∑

i∈I (2) ki 1P (ai ,Ai )(P ) =∑
i∈I (2) ki 1P (bi ,Ai )(P ) for all P ∈P .

This further implies that

∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )

for all P ∈ P . Since there are less than k − 1 sets in the sequence (Ai )i∈I \I (2) it follows by

the induction hypothesis that
∑

i∈I \I (2) ki 1P (ai ,Ai )(P ) = ∑
i∈I \I (2) ki 1P (bi ,Ai )(P ) for all P ∈ P .

This proves the claim.

Finally, we are ready for the proof of proposition 8.4 in Petri (2021).

Proof. Define a relation % on X ×A by (a, A)% (b,B) if and only if ρ(a, A) ≥ ρ(b,B) and A =
B . We check that % satisfies P -cancellation. Let (a1, A1), ..., (an , An) and (b1,B1), ..., (bn ,Bn)

be such that (ai , Ai )% (bi ,Bi ) for all i ∈ {1, ...,n} and assume that :

n∑
i=1

ki 1P (ai ,Ai )(P ) ≤
n∑

i=1
ki 1P (bi ,Bi )(P )

for all P ∈P .

Since (ai , Ai ) % (bi ,Bi ) for all i ∈ {1, ...,n} it follows that Ai = Bi for all i ∈ {1, ...,n} by

definition of %. We prove the claim by induction on the number of distinct sets in the se-

quence A1, ..., An . The base case is clear. Assume that the claim holds when there are k −1

distinct sets in the sequence. Let A1, ..., An be a sequence with k distinct sets. Hence there

are i , j ∈ {1, ...,n} with Ai \ A j 6= ;. Let b ∈ Ai \ A j and consider the set of orders P ∈P with

b as their top element in X , i.e. P (b, X ). Let I (2) = {i ∈ I : b ∉ Ai } and note that

∑
i∈I \I (2)

ki 1P (ai ,Ai )(P )− ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P ) = ∑
{i∈I :ai=b}

ki −
∑

{i∈I :bi=b}
ki = 0

for all P ∈P (b, X ), where the first equality follows since P ∈P (b, X ) and the second equality

follows by lemma 0.3. Using this, it then follows that

∑
i∈I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )

for all P ∈P (b, X ). But since b ∉ Ai for any i ∈ I (2) we futher have that

∑
i∈I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I (2)

ki 1P (bi ,Ai )(P )
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for all P ∈ P . If n ∈ I (2) the claim follows by induction hypothesis. Otherwise, note that

lemma 0.5 implies that
∑

i∈I (2) ki 1P (ai ,Ai )(P ) = ∑
i∈I (2) ki 1P (bi ,Ai )(P ) for all P ∈ P . This fur-

ther implies that

∑
i∈I \I (2)

ki 1P (ai ,Ai )(P ) ≤ ∑
i∈I \I (2)

ki 1P (bi ,Ai )(P )

for all P ∈P . Since there are less than k −1 sets in the sequence (Ai )i∈I \I (2) it follows by the

induction hypothesis that (bn , An)% (an , An). As we wanted to show.
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