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Abstract. We introduce a logit type model of bundle choice that allows for com-

plementarities between alternatives. A utility-value is assigned to each bundle of al-

ternatives. The probability of choosing a bundle is proportional to the utility-value

assigned to it. The data available to the researcher is in the form of product-level

market shares, i.e. a marginal distribution. We characterize the model and show

that its underlying parameters are unique (up to multiplication by a scalar). An

implication of uniqueness is that any complementarities between alternatives can

be revealed from data.
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1. Introduction

A standing assumption in much of the stochastic/discrete choice literature is that

the set of alternatives compromising a choice set aremutually exclusive. However, this

assumption is at odds with economic environments where consumers (may) choose

multiple (bundles of) alternatives. In particular, this assumption precludes com-

plementarities between alternatives in a choice set. Consider a customer visiting a

grocery store. Among coffees, she might not just choose one type of coffee but several

ones (for instance differing in their strengths, such as a regular one and a stronger

one). Or, it might be, that she enjoys her coffee more with a pastry, or more with

milk, and hence purchases a combination of these alternatives. Due to complementar-

ities, some alternatives are enjoyed more when purchased together as a bundle than
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alone. Such complementarities are, however, difficult to infer from standard discrete

choice data due to the mutual exclusivity of alternatives.

Ideally, to analyse bundle choice the researcher would need to observe the frequen-

cies by which each bundle/subset of a set of alternatives is chosen. For instance, many

of the existing econometric methods on bundle choice require individual level choice

data on bundles such as scanner-data. However such data can be costly and hard

to come by in practice. In this paper we try to side-step this issue and propose to

analyse bundle choices using the more accessible ”product-level market share” choice

data (for a related discussion see Wang (2021) who is motivated by similar concerns

as us and propose econometric methods to identify demand in bundle models with

observable product-level market shares). That is, we assume that the researcher

observes the aggregate market shares of each alternative (i.e. the fraction of the pop-

ulation that chooses a particular alternative) but not the individual bundle choice

probabilities (i.e. how often each bundle is chosen).

Besides being a more common type of data,1 an advantage of studying marginal

choice data over bundle data is that it is more parsimonious. A probability distri-

bution over bundles from a set of n alternatives requires 2n − 1 parameters (one for

each bundle). Whereas describing the marginal distribution only requires n param-

eters, i.e. the marginal probability of each alternative.2 To illustrate, consider data

on purchases from a grocery store. If the grocery store only records the number of

customers that chooses each item, but not the exact bundles that they choose, this

gives access to the marginal distribution, but not the distribution over bundles.

In this paper we study a bundle version of the classical logit rule that allows

complementarities between alternatives to be inferred from choice data. The proposed

model is a natural extension of the classical (single-valued) Luce rule. The main

ingredient is a utility function on bundles of alternatives, where the probability of

choosing a bundle is proportional to the utility value assigned to the bundle. We

offer a characterization of the model and show that the underlying parameters are

1I.e. it is a theoretically less demanding notion as every multivalued choice rule induces a marginal
probability distribution.
2See also Ahn, Echenique, and Saito (2018) who are motivated by similar concerns in the context
of average choice data.
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identified. An implication is that any complementarities between alternatives are

revealed by data.

We give necessary and sufficient conditions on marginal stochastic choice data to

be consistent with (i.e. arise as the marginal probability of) a multivalued logit rule.

Our main property is path independence, which is reminiscent of Luce’s choice axiom

(we refer to section 3.1 for a precise statement and discussion of this property). We

also show that the representation of any marginal data set by a multivalued logit rule

is unique (up to multiplication by a scalar). Perhaps surprisingly, this means that

the model has just as good identification properties as the classical logit rule, despite

the larger number of parameters of the model. Thus, in the case of logit, we can use

the less rich marginal choice data to identify the underlying distribution on bundles.

The representation by a multivalued logit rule gives a baked in definition of comple-

mentarity and substitutability. Roughly speaking, two alternatives a, b are comple-

ments (substitutes) if the utility value of the bundle {a, b}, is larger (smaller) than the

utility of the alternatives a and b in isolation, i.e. if σ({a, b}) > σ({a})+σ({b}). Sec-
tion 5 establishes necessary and sufficient conditions on observed choice data for there

to be complementarities between pairs of alternatives. We also introduce higher order

versions of complementarity/substitutability applicable to bundles of size larger than

two. Essentially, there is complementarity at a bundle A if there is additional com-

plementarity between alternatives in A compared to any complementarity between

alternatives in subsets of A. Our identification result implies that complementarity

and substitutability between alternatives in a bundle can be inferred from (marginal)

choice data alone.

We also consider a special case of multivalued logit where only binary bundles

(containing at most two alternatives) are chosen by the agent. This model deviates

minimally from the standard single-valued/univalent logit rule in that the choices are

”almost” univalent. The binary-valued logit model is characterized by a relaxation

of the Luce choice axiom. The standard Luce choice axiom says that the probability

of choosing an alternative a ∈ A equals the probability of choosing a subset A \ c

(where c ̸= a) times the probability of choosing a in A \ c. Roughly, our property

says that the probability of choosing a bundle containing both a and b in a menu A
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equals the probability of choosing a subset of the form A \ c (where c ̸= a and c ̸= b)

times the probability of choosing a bundle containing both a and b in A \ c.
The paper is concluded with a discussion of the relation to the classical Luce rule for

stochastic choice functions. As a corollary to our characterization of multivalued logit

we obtain a (to the best of our knowledge) new characterization of the classical Luce

rule. The model is characterized by our path independence property. Although path

independence is a more permissive condition than Luce’s choice axiom for marginal

choice data, we show that these two conditions are equivalent for (positive) stochastic

choice functions.

1.1. Related literature. This paper relates to an econometric literature that con-

siders estimation and identification of complementarities in discrete choice models of

bundle choice (Gentzkow (2007), Allen and Rehbeck (2019), Iaria and Wang (2020),

Wang (2021), Allen and Rehbeck (2022)). 3Particularly close to the present paper

is a subset of this literature that establish identification in bundle models with only

aggregate product-level market shares available to the analyst (see e.g. Allen and

Rehbeck (2019), Wang (2021) and Allen and Rehbeck (2022)). A challenge when

establishing identification in these models is that there are usually many more pa-

rameters than data points. I.e. observing a high demand for one alternative could

either be due to consumers’ preference for this good, but also be due to complemen-

tarities with other products. These two sources of demand need to be disentangled.

We show how to identify bundle utilities, and hence complementarities, in a logit

model with only marginal data on choices available.

The notion of marginal data considered in this paper is inspired by Manzini, Mar-

iotti, and Ülkü (2022) who propose to analyze approval behavior using a ”stochastic

approval function”. A stochastic approval function is similar to the type of data con-

sidered in this paper in that it does not impose any constraint on choice probabilities

to sum to one in menus. They also consider the notion of marginalization and view a

stochastic approval function as the marginalization of approval probabilities. Azrieli

and Rehbeck (2022) also study marginal choice data. However, their notion of mar-

ginal data is different from ours. They use marginal choice data to infer properties

3For a related decision-theoretic paper that studies model-free and behavioral notions of comple-
mentarity see Manzini, Mariotti, and Ülkü (2019).
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of standard (univalent) stochastic choice models, whereas we consider the marginal

bundle data and apply it to study a bundle version of the standard logit choice model.

Wang (2022) studies similar data but in a different context. He interprets the data as

a binary authorization/categorization probability. Similarly to us, he characterizes a

logit type rule, but the interpretation of his model is different from ours.

Our paper is related to a strand of literature following Manzini and Mariotti

(2014) that studies stochastic consideration set formation in choice. Particularly

close is Brady and Rehbeck (2016) who consider a random conditional choice set rule

(RCCSR). The RCCSR assumes deterministic preferences and that feasible sets are

drawn according to a multivalued logit rule (as studied in this paper). Preference

maximizing alternatives are then chosen from each feasible set of alternatives. Simi-

lar to Brady and Rehbeck (2016) our proof technique makes use of Möbius inversion

to define the utility values of subsets of alternatives. A notable difference between

our approaches is that we do not need to assume an outside default option. The de-

fault option is needed to identify the underlying preferences in an RCCSR. Since we

only model the feasibility correspondence, the default option is not needed. Another

related paper is Ravid and Steverson (2019). In subsection 4.1 we consider a binary

version of multivalued logit (where only bundles of size smaller than two are chosen

by the DM). This version of our model can be viewed as an additive counterpart of

their model.

Finally, this paper also relates to a recent strand of literature that explores is-

sues that arise when inferring multivalued behaviors from single-valued choice data.

Inferring underlying multivalued behaviors using single-valued data calls for various

auxiliary assumptions on how agents arrive at unique choices (such as the tie-breaking

rule used by individuals). This can in turn cause issues with identification (see e.g.

Petri (2022) for a discussion). Only a few recent papers propose methods to elicit

(deterministic) multivalued choices directly using (non-) forced multivalued choice

tasks (see e.g. Costa-Gomes, Cueva, and Gerasimou (2021) and Gerasimou (2022)).

However, these papers are mainly situated in a deterministic (non-repeated) setting.
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2. Data

We denote by X a finite set of alternatives. A nonempty subset A ⊆ X is called a

menu. Let A denote the collection of nonempty subsets of X, i.e. A is the collection

of all menus. Ideally, to describe bundle choices the researcher would need to observe,

for each menu of choices, the probability by which each bundle in the menu is chosen.

Formally, such a dataset can be described by a stochastic choice rule, which is a

mapping R : A×A → [0, 1] such that
∑

B⊆A R(B,A) = 1 for all menus A ∈ A and

such that R(B,A) > 0 only if B ⊆ A. For each A ∈ A, R(·, A) is thus a probability

distribution on subsets of A and R(B,A) can be interpreted as the probability of

choosing bundle B in A. However, as explained in the introduction, this type of

bundle data is rare in practice. We instead assume that the researcher observes a

marginal SCR, i.e. the market-shares of each alternative.

Definition 2.1. A function ρ : X × A 7→ [0, 1] is a marginal stochastic choice rule

(marginal SCR) if there is a stochastic choice rule R such that

ρ(a,A) =
∑

a∈B:B⊆A

R(B,A)

for all a ∈ A and A ⊆ X. ◁

We wish to emphasize that even though the adding-up constraint
∑

a∈A ρ(a,A) = 1

does not hold for marginal SCRs, the numbers ρ(a,A) have a clear probabilistic in-

terpretation. To see this, suppose that we have a given probability distribution on

bundles in a menu A. The probability of selecting alternative a in menu A is then sim-

ply the sum of probabilities over all bundles B containing a, i.e.
∑

a∈B:B⊆A R(B,A).

Another interpretation of ρ(a,A) is as the aggregate market-share of alternative a in

A. I.e. it is obtained by summing the market shares R(B,A) of all bundles containing

a.

Note that the underlying SCR R in definition 2.1 is not observed by the researcher,

but has to be inferred from ρ. Without further information, there may be sev-

eral SCRs R inducing the same (observed) marginal SCR. To clarify this we may

also define a marginal SCR without reference to an underlying SCR R. The next

proposition shows that a marginal SCR can equivalently be defined as a mapping

ρ : X ×A 7→ [0, 1] such that for all A ⊆ X:
∑

a∈A ρ(a,A) ≥ 1.
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Proposition 2.2. A function ρ : X × A → [0, 1] is a marginal SCR if and only if

for each menu A ⊆ X: ∑
a∈A

ρ(a,A) ≥ 1.

As mentioned, marginal SCRs are generally not rich enough to identify underlying

multivalued choices R. However, as we will see in section 3, this type of data does

not lose any power in case of multivalued logit (i.e. identification is possible).

3. Multivalued logit

This section presents and discusses the main model studied in this paper.

Definition 3.1. A marginal SCR ρ is a multivalued logit rule if there is a function

σ : 2X → [0,∞) such that

(1) ρ(a,A) =

∑
B⊆A:a∈B

σ(B)∑
B⊆A

σ(B)

for all a ∈ A and A ⊆ X and σ({a}) > 0 for all a ∈ A. ◁

The resemblance with the classical (univalent) logit choice rule is clear. A stochastic

choice function is a univalent logit rule (or classical logit rule) if there is a utility

function u : X → (0,∞) such that ρ(a,A) = u(a)∑
b∈A u(b)

for all a ∈ A and A ⊆ X. The

univalent logit rule can be viewed as a special case of multivalued logit, corresponding

to a function σ s.t. σ(A) = 0 for all A ⊆ X with |A| ≥ 2.

The parameter σ in a multivalued logit rule can be interpreted as a measure of the

desirability/utility value of a bundle of alternatives. Faced with a menu of alternatives

A the decision maker chooses a specific bundle of alternatives B ⊆ A with probability

proportional to its utility value σ(B). I.e. with probability R(B,A) = σ(B)∑
B⊆A

σ(B)
. It

is worth repeating that the bundle choice probabilities R(B,A) are not observable

in our framework, but rather the marginal probabilities ρ(a,A) =
∑

a∈B⊆A

R(B,A). If

bundle probabilities R(B,A) were observable then identification and characterization

of the model would follow along similar lines of reasoning as for the classical logit

rule.
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3.1. Characterization and identification. The multivalued logit rule is character-

ized by three different properties on choice probabilities. The first property is a weak

version of the positivity/full support assumption of the standard (univalent) logit

rule. Roughly speaking, it excludes the existence of monopolistic goods in menus,

i.e. goods such that each and every individual chooses them.

Varied support. A marginal SCR ρ satisfies varied support if ρ(a,A) < 1 for all

a ∈ A and A ⊆ X.

If a marginal SCR satisfies the varied support assumption then there is for every

a ∈ A an alternative b ̸= a such that ρ(b, A) > 0. This condition is clearly necessary

for a multivalued logit since it assumes that all singletons are chosen with positive

probability. The next property, path independence, is the main property in our

characterization. It is related to (and in our setting weaker than) Luce’s choice

axiom. We discuss the relation to Luce’s choice axiom further in section 6.

Path independence. A marginal SCR ρ satisfies path independence if

(2) [1− ρ(a,A)][1− ρ(b, A \ a)] = [1− ρ(b, A)][1− ρ(a,A \ b)]

for all a, b ∈ A and A ⊆ X.

Recall that ρ(a,A) can be interpreted as the fraction of times that a decision maker

chooses (a bundle containing) a. The quantity 1 − ρ(a,A) can hence be interpreted

as the fraction of times that a bundle not containing a is chosen, or as the fraction

of times that alternative a is not chosen in A. To see this, note that

1− ρ(a,A) =
∑
B⊆A

R(B,A)−
∑

a∈B:B⊆A

R(B,A) =
∑

B⊆A\a

R(B,A).

To understand the intuition behind path independence consider the probability of

choosing a bundle in A \ {a, b} when all alternatives in A are available. Roughly

speaking, the probability that an agent chooses a bundle B ⊆ A \ {a, b} equals

the probability that alternative a is not chosen in A (equivalently: the probability

that a bundle not containing A is chosen) times the probability that b is not chosen

when only the alternatives in A \ a are available. Path independence says that this
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probability is independent on whether we first eliminate a from A and then b from

A \ a, or, if we first eliminate b from A and then a from A \ b.
We next introduce our final property, which is a weak positivity assumption remi-

niscent of the eponymous Block-Marschak polynomials (Block and Marschak, 1960)

characterizing the random utility model. To state it, we define an auxiliary function

fρ : 2X → (0,∞) for each A ⊆ X with A ̸= X by setting

(3) fρ(A) =
k∏

i=1

[1− ρ(xi, X \ {x1, . . . , xi−1})]

where {x1, . . . , xk} = X\A is an enumeration ofX\A. Set fρ(X) = 1. Lemma A.1 in

the appendix implies that this function is well-defined, i.e. that fρ(A) is independent

of the enumeration of X \ A. Loosely, the function fρ(A) gives the probability of

choosing some bundle in A when the set of available alternatives is X.

Positivity. A marginal SCR ρ satisfies positivity if

δfρ(A) =
∑
B⊆A

(−1)|A\B|fρ(B) ≥ 0

for all A ⊆ X.

Note that fρ(A) gives the probability that some bundle in A is chosen. Suppose that

we would like to find the probability that exactly the bundle A is chosen. Then we

subtract from fρ(A) the probabilities fρ(A\b) that some bundle in A\b is chosen (for

each b ∈ A). But, then the probabilities of the bundles in the pairwise intersections

of the sets A \ b have been subtracted too often, so we add them back, and so on.

This combinatorial argument, which is similar to the inclusion-exclusion principle,

shows that the probability of choosing bundle A is equal to
∑

B⊆A(−1)|A\B|fρ(B).

Positivity is thus a quite weak requirement as it only requires each bundle to be

chosen with weakly positive probability. Indeed, if ρ is a multivalued logit, then

one can show that there is a scalar c > 0 s.t. δfρ(A) = cσ(A) for all menus A, so

positivity of δfρ is equivalent to positivity of σ for multivalued logit.

The following recursive formulation of positivity perhaps clarifies some of the in-

tuition behind it. For all A ⊆ X and a ∈ A, define ∆af
ρ(A) = fρ(A)− fρ(A \a) and
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for any sequence a1, ..., an ∈ A define

∆an . . .∆a1f
ρ(A) = ∆an . . .∆a2f

ρ(A)−∆an . . .∆a2f
ρ(A \ a1).

Then positivity is equivalent to the condition that ∆an . . .∆a1f
ρ(A) ≥ 0 for all A ⊆ X

and any a1, . . . , an ∈ A. Thus positivity says that the probability of choosing some

bundle of a set A increases as A gets larger, and it does so at an increasing rate. This

interpretation of positivity resembles other positivity conditions considered in the

literature such as those considered in Brady and Rehbeck (2016) and Aguiar (2017).

Theorem 3.2. A marginal SCR is a multivalued logit rule if and only if it satisfies

varied support, path independence and positivity. Moreover, the representation is

unique (up to multiplication of σ by a scalar).

The proof of theorem 3.2 is in appendix A.3 and uses Möbius inversion to define a

function σ : X → (−∞,∞) from marginal choice probabilities ρ. Positivity is then

used to assure that σ is weakly positive. If ρ is a multivalued logit then there is a

constant α > 0 such that σ(A) = α · δfρ(A) for all A ⊆ X, so positivity of δfρ(A)

implies positivity of σ. The previous equation also implies that the function σ is

unique up to multiplication by a scalar. This relationship is useful in establishing

testable implications of versions of multivalued logit obtained by imposing restrictions

on σ. Note, for instance, that we do not impose any monotonicity conditions on σ

at the outset. I.e., besides being positive, σ is completely unrestricted. But, since σ

is revealed by δfρ(·), we can test any properties on σ we wish by using δfρ(·). We

may, for instance, postulate that σ is larger for smaller sets reflecting a smaller cost

of purchasing smaller bundles. A multivalued logit ρ with function σ : X → (0,∞) is

called monotone if σ(A) ≥ σ(B) if A ⊆ B. From the previous discussion, we thus see

that a multivalued logit with monotone σ is characterized by imposing the condition

that δfρ(A) ≥ δfρ(B) if A ⊆ B.

3.2. Binary menus. In empirical and experimental applications limited menu col-

lections are common. A very common type of domain is the domain consisting of

binary choice menus, i.e. all menus A with |A| = 2. The characterization of the

model is particularly simple when restricted to the collection of binary menus (in the

remainder of the paper we will use the short-hand notation ρ(a, b) for ρ(a, ab)).
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Product rule. A marginal SCR ρ satisfies the product rule if for all a, b, c ∈ X:

1− ρ(b, a)

1− ρ(a, b)
× 1− ρ(c, b)

1− ρ(b, c)
=

1− ρ(c, a)

1− ρ(a, c)
.

Note that 1− ρ(b, a) reveals (up to a scalar) the fraction of times an agent chooses

a bundle containing the single item a in {a, b}. This is because 1 − ρ(b, a) =
σ(a)

σ(a)+σ(b)+σ(ab)
. Hence, similarly as for the classical logit rule, it follows that 1−ρ(b,a)

1−ρ(a,b)

reveals the ratio σ(a)
σ(b)

. By this it is immediate that any multivalued logit satisfies

the product rule. Below we show that this property characterizes multivalued logit

restricted to the binary menus.

Proposition 3.3. Let A be the collection of binary menus. A marginal SCR ρ :

X × A → [0, 1] is a multivalued logit if and only if it satisfies the product rule and

varied support.

Proof. Fix a0 ∈ X and define σ(a) = 1−ρ(a0,a)
1−ρ(a,a0)

for all a ∈ X. For all a, b ∈ X define

σ({a, b}) = ρ(a, b)[σ(a) + σ(b)]− σ(a)

1− ρ(a, b)
.

To show that σ is well-defined we need to show that

ρ(a, b)[σ(a) + σ(b)]− σ(a)

1− ρ(a, b)
=

ρ(b, a)[σ(b) + σ(a)]− σ(b)

1− ρ(b, a)

for all a, b ∈ X. But, one can show that the previous equality holds if and only if
σ(b)
σ(a)

= 1−ρ(a,b)
1−ρ(b,a)

. By the product rule and the definition of σ it follows that

1− ρ(a, b)

1− ρ(b, a)
=

1− ρ(a0, b)

1− ρ(b, a0)
× 1− ρ(a, a0)

1− ρ(a0, a)
=

σ(b)

σ(a)
.

We next show that ρ is a multivalued logit. Let a, b ∈ X. By definition of σ

we have σ({a, b}) = ρ(a,b)[σ(a)+σ(b)]−σ(a)
1−ρ(a,b)

. Solving for ρ(a, b) we then get the desired

representation. □

4. Multivalued logit with limited domain

We next discuss special cases of the model obtained by varying the domain of the

function σ. We first consider a model where the agent is restricted to choose binary
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bundles. We then consider the classical univalent logit rule and discuss the relation

to it.

4.1. Binary-valued logit. Call a marginal SCR ρ a binary-valued logit rule if there

is a symmetric4 function σ : X ×X → (0,∞) such that

ρ(a,A) =

∑
b∈A

σ(a, b)∑
{c,d}⊆A

σ(c, d)

for all a ∈ A and A ⊆ X. This model is clearly a special case of multivalued logit.

I.e. a binary logit rule is a multivalued logit rule with function σ s.t. σ(A) = 0 for

all A ⊆ X with |A| ≥ 3. It turns out that the characterization of multivalued logit

is considerably simplified by imposing this constraint. For all menus A ⊆ X define

O(a, b, A) for all a, b ∈ A by

O(a, b, A) = ρ(a,A)− [1− ρ(b, A)]ρ(a,A \ b).

The number O(a, b, A) can be interpreted as the probability of choosing a bundle

containing both a and b in menu A. Consider the case when ρ is a multivalued logit,

then

O(a, b, A) =

∑
a,b∈B:B⊆A

σ(B)∑
B⊆A

σ(B)
.

Thus, O(a, b, A) is the probability by which a, b are chosen together in a bundle in

menu A. The case O(a, b, A) = 0 corresponds to a case where a and b are completely

independent, i.e. a, b are never chosen together in a bundle in A. The higher is

O(a, b, A) the higher is the degree of dependence between a and b. Our next property

is reminiscent of the classical Luce choice axiom (LCA).

Bundle LCA. For all menus A ⊆ X and alternatives a, b, c ∈ A it holds that

O(a, b, A) = [1− ρ(c, A)]O(a, b, A \ c).

Roughly speaking, bundle LCA says that the probability of choosing a bundle

a, b ∈ A equals the probability of not choosing c ∈ A multiplied with the probability

4The function σ is symmetric if σ(a, b) = σ(b, a) for all a, b ∈ X.
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of choosing a, b ∈ A \ c (i.e. when c is not available in A). Note that bundle LCA

implies path independence. This is because O(a, b, {a, b}) = ρ(a, b) + ρ(b, a) − 1 =

O(b, a, {a, b}) for all a, b ∈ A. Using bundle LCA this in turn implies that O(a, b, A) =

O(b, a, A) for all a, b ∈ A and for all menus A with |A| = 3. By induction and bundle

LCA it then follows that O(a, b, A) = O(b, a, A) for all a, b ∈ A and menus A. It

is then straightforward to show that these symmetry conditions on the O(·, ·, A) are
equivalent to path independence.

Proposition 4.1. A marginal SCR ρ is a binary-valued logit if and only if it satisfies

varied support and bundle LCA.

The proof of proposition 4.1 uses bundle LCA (hence path independence) and

Möbius inversion to show that ρ is a signed multivalued logit rule, i.e. ρ satisfies

equation (1) in definition 3.1 with a function σ : X → (−∞,∞). Bundle LCA then

assures that σ vanishes for all menus with three or more alternatives. To show that

σ is positive for all binary menus, we note that δfρ(ab) ≥ 0 holds for all a, b ∈ X.

I.e. that positivity vacuously holds for binary menus. We refer to the appendix for a

complete proof of proposition 4.1.

4.2. Univalent logit. Recall that a marginal SCR is a univalent logit rule if there is

a function σ : X → (0,∞) such that ρ(a,A) = σ(a)∑
b∈A σ(b)

for all a ∈ A and A ⊆ X. A

stochastic choice function (SCF) ρ is a marginal SCR with the adding-up constraint∑
a∈A ρ(a,A) = 1. It is well-known that Luce’s choice axiom (LCA) characterizes

SCFs with a univalent logit representation.

LCA. A marginal SCR ρ satisfies LCA if

ρ(a,A) = [1− ρ(b, A)]ρ(a,A \ b)

for all A ⊆ X and a, b ∈ A.

We next show that this characterization extends to marginal SCRs. An implication

of this is hence that Luce’s choice axiom implies that choice probabilities sum to one.

Proposition 4.2. A marginal SCR ρ is a univalent logit rule if and only if it satisfies

varied support and LCA.
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Proof. It is clear that LCA implies Bundle LCA, since LCA implies thatO(a, b, A) = 0

for all a, b ∈ A and for all A ⊆ X. Hence, by proposition 4.1, ρ is a binary-valued

logit rule with function σ : X ×X → (0,∞). It thus suffices to show that σ(a, b) = 0

for all distinct a, b ∈ X. To see this, note that for all distinct a, b ∈ X we have

σ(a, b)∑
{c,d}⊆A

σ(c, d)
= ρ(a,A)− [1− ρ(b, A)]ρ(a,A \ b) = 0,

where the last equality follows by LCA. □

As a corollary to proposition 4.2, we note that LCA implies that probabilities sum

to one (which is not assumed at the outset since we consider marginal data). To see

this note that

(4)
∑
a∈A\b

ρ(a,A) = (1− ρ(b, A))
∑
a∈A\b

ρ(a,A \ b) = 0

Hence, since ρ(a, a) = 1 (which follows by definition of a marginal SCR) we have

ρ(a, b) = (1−ρ(b, a))ρ(a, a) = 1−ρ(b, a) for all a, b ∈ A. Using an induction argument

and equation (4) it then follows that probabilities sum to one in each menu.

5. Complementarity/substitutability between alternatives

The representation in terms of a multivalued logit rule suggests a natural notion

of complementarity/substitutability between alternatives. Roughly speaking, two

alternatives are complements if they are enjoyed more when chosen/purchased as

a bundle than in isolation. In the context of multivalued logit, this means that

σ(ab) > σ(a) + σ(b). Similarly, a and b are substitutes if σ(ab) < σ(a) + σ(b).

The following is a higher order generalization of substitutability/complementarity to

bundles of larger size.

Definition 5.1. There is complementarity (substitutability) at the bundle A ⊆ X if∑
B⊆A

(−1)|A\B|σ(B) > (<) 0.

◁

As an example consider the bundle {a, b, c}. If there is complementarity at {a, b, c}
this means that 0 < σ({a, b, c}) − σ(ab) − σ(ac) − σ(bc) + σ(a) + σ(b) + σ(c) =
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σ({a, b, c})− (σ(ab)− σ(a)− σ(b))− (σ(ac)− σ(a)− σ(c))− (σ(bc)− σ(b)− σ(c))−
σ(a) − σ(b) − σ(c). I.e. this means that there is additional complementarity at

{a, b, c} relative to any of the pairwise or singleton bundles. By theorem 3.2 the

bundle utility function σ is unique up to an affine transformation. An implication

is hence that complementarity and substitutability at a bundle can be revealed from

choice data. To see this note that if σ is such that there is complementarity at bundle

A, then for any affine transformation σ′ = c · σ of σ there will be complementarity at

bundle A as well.

The following proposition gives a simple way to check whether there is complemen-

tarity at a small bundle of size two.

Proposition 5.2. For all bundles A ⊆ X with |A| = 2 there is complementarity at

A ⊆ X if and only if ∑
a∈A

ρ(a,A) ≥ 3

2
.

Proof. Let A ⊆ X with |A| = 2. Assume that there is complementarity at A ⊆ X

so that σ(ab)− σ(a)− σ(b) > 0. Then, since ρ is a multivalued logit, it follows that

σ(A) = c · δfρ(A) for all A ⊆ X. Using this we have that

σ(ab)− σ(a)− σ(b) = c[δfρ(ab)− δfρ(a)− δfρ(b)] =

= c[fρ(ab)− 2fρ(a)− 2fρ(b)] = cfρ(ab)[1− 2(1− ρ(b, a))− 2(1− ρ(a, b))] =

cfρ(ab)[2(ρ(a, b) + ρ(b, a))− 3].

And, it is clear, that the last expression is strictly positive if and only if ρ(a, b) +

ρ(b, a) ≥ 3
2
. □

The borderline case, when there is zero additional complementarity or substi-

tutability of purchasing a bundle relative to any smaller bundle, corresponds to a

case of an additive function σ. The goods in the bundle A are in this case ”inde-

pendent”. In the literature on bundle choice, two goods a, b are independent if the

demand for alternative a is independent of the price of good b.

Proposition 5.3. The function σ : 2X → [0,∞) is additive, i.e.

σ(A) =
∑
a∈A

σ(a)
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for all A ⊆ X if and only if ∑
B⊆A

(−1)|A\B|σ(B) = 0

for all A ⊆ X with |A| ≥ 2.

Proof. Define g(A) =
∑

B⊆A(−1)|A\B|σ(B) for all A ⊆ X. By the Möbius inversion

formula in lemma A.2 it then follows that σ(A) =
∑

B⊆A g(B) for all A ⊆ X. But,

since g(A) = 0 for all A ⊆ X with |A| ≥ 2 and g(a) = σ(a), it follows that σ(A) =∑
B⊆A g(B) =

∑
a∈A σ(a). Conversely, assume that σ is additive, then∑

B⊆A

(−1)|A\B|σ(B) =
∑

B:a∈B⊆A

(−1)|A\B| [σ(a) + σ(B \ a)] +
∑

B⊆A\a

(−1)|A\B|σ(B) =

=
∑

B:a∈B⊆A

(−1)|A\B|σ(a) +
∑

B⊆A\a

(−1)|A\B|−1σ(B) +
∑

B⊆A\a

(−1)|A\B|σ(B) = 0.

□

6. Discussion

6.1. Relation to classical logit and a new characterization. In this section we

discuss the relationship to the classical Luce rule for stochastic choice functions. A

stochastic choice function is a marginal SCR ρ : X×A → [0, 1] satisfying the adding-

up constraint
∑

a∈A ρ(a,A) = 1. Thus, a stochastic choice function imposes the extra

constraint that alternatives are perfect substitutes already from the outset. In this

section we show that imposing this constraint implies that bundle utilities are zero

and hence cannot be inferred from data. As a corollary to this result, and perhaps

of independent interest, we obtain a new characterization of the classical Luce rule.

Proposition 6.1. Let ρ be a stochastic choice function. Then ρ is a (signed) multi-

valued logit rule if and only if it is a univalent logit rule.

Proof. Let ρ be a stochastic choice function represented by a multivalued logit with

function σ. We claim that σ(A) = 0 for all A ⊆ X with |A| ≥ 2. Let A ⊆ X with

|A| = 2 so that A = {a, b} for some a, b ∈ X. Then, since ρ(a, b) + ρ(b, a) = 1 we

have
σ(a) + σ(b) + 2σ({a, b})
σ(a) + σ(b) + σ({a, b})

= 1,
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Marginal SCRSCF

Logit

Multivalued logit

Figure 1. Figure showing the relationship between univalent and mul-
tivalued logit as established in proposition 6.1.

implying that σ({a, b}) = 0. Assume that σ(A) = 0 for all A ⊆ X with 2 ≤ |A| ≤ k.

Let A ⊆ X with |A| = k + 1. Then ρ(a,A) = σ(A)+σ(a)
σ(A)+

∑
b∈A σ(b)

for all a ∈ A. Since∑
a∈A ρ(a,A) = 1, this implies that

|A|σ(A) +
∑

a∈A σ(a)

σ(A) +
∑

b∈A σ(b)
=

∑
a∈A

σ(A) + σ(a)

σ(A) +
∑

b∈A σ(b)
= 1.

Thus σ(A) = 0, and the claim now follows by induction. □

As a corollary to proposition 6.1 we obtain a (to the best of our knowledge) new

characterization of the classical Luce/logit rule.

Corollary 6.2. A positive stochastic choice function ρ is a logit rule if and only if

it satisfies path independence.

6.2. Zero probabilities in choice. The preceding discussion, as summarized by

corollary 6.2, implies that Luce’s choice axiom and path independence are equivalent

properties for positive stochastic choice functions. Recently, Cerreia-Vioglio, Lind-

berg, Maccheroni, Marinacci, and Rustichini (2021) obtain a characterization of a

version of Luce’s model that allows for zero probabilities in choice. They show that

Luce’s choice axiom is equivalent to a two stage model of choice, where in a first

stage maximal alternatives are chosen using a weak order and in a second stage ties

are broken using a standard Luce model. We conjecture that our path independence

property is equivalent to Luce’s choice axiom (for arbitrary, not necessarily positive,
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stochastic choice functions). It is straightforward to show that Luce’s choice axiom

implies path independence. To see this, note that [1 − ρ(a,A)][1 − ρ(b, A \ a)] =

[1−ρ(a,A)]
∑

c∈A\{ab} ρ(c, A\a) =
∑

c∈A\{ab} ρ(c, A) = [1−ρ(b, A)]
∑

c∈A\{ab} ρ(c, A\
b) = [1 − ρ(b, A)][1 − ρ(a,A \ b)].5 The proof of the converse implication is less

straightforward and has been confirmed for |X| ≤ 3 (proof available on request).

Appendix A. Proofs

A.1. Proof that the function fρ is well-defined. Let A ⊆ X. For every enumer-

ation of X \ A as {x1, . . . , xk} of X define

g({x1, . . . , xk}) =
k∏

i=1

[1− ρ(xi, X \ {x1, . . . , xi−1})],

where we use the convention that X \ {x1, . . . , xi−1} = X for all i ≤ 1. We define

a binary relation ∼ on enumerations of X \ A by {x1, . . . , xk} ∼ {y1, . . . , yk} if and

only if g({x1, . . . , xk}) = g({y1, . . . , yk}). This relation is clearly transitive (since the

canonical equality relation on real numbers is transitive). The following lemma shows

that all pairs of sequences {x1, . . . , xk} and {y1, . . . , yk} are related by ∼ and hence

that fρ is well-defined.

Lemma A.1. Let A ⊆ X and let {x1, . . . , xk} and {y1, . . . , yk} be enumerations of

X \ A. If ρ is path independent then

k∏
i=1

[1− ρ(xi, X \ {x1, . . . , xi−1})] =
k∏

i=1

[1− ρ(yi, X \ {y1, . . . , yi−1})].

Proof. The proof is by induction on the cardinality k of X \A. The base case k = 2

follows directly by path independence. Suppose that the claim holds for all sets

A ⊆ X such that |X \ A| ≤ m. Let A be a subset of X such that |X \ A| = m + 1.

Let {x1, . . . , xm+1} and {y1, . . . , ym+1} be enumerations of X \ A. If xm+1 = ym+1

then the claim follows by the induction hypothesis. Assume that xm+1 ̸= ym+1 = a.

Then there is a k < m + 1 with xk = a. By path independence it follows that

{x1, . . . , xk, xk+1, . . . , xm+1} ∼ {x1, . . . , xk+1, xk, . . . , xm+1}. To see this note that

g({x1, . . . , xk, xk+1, . . . , xm+1}) =
5As discussed in subsection 4.2 Luce’s choice axiom implies that choice probabilities sum to one and
hence this implication even holds for marginal SCRs ρ.
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m+1∏
i=1

i ̸=k,i̸=k+1

[1−ρ(xi, X\{x1, . . . , xi−1})][1−ρ(xk, X\{x1, . . . , xk−1})][1−ρ(xk+1, X\{x1, . . . , xk−1, xk})] =

m+1∏
i=1

i ̸=k,i̸=k+1

[1−ρ(xi, X\{x1, . . . , xi−1})][1−ρ(xk+1, X\{x1, . . . , xk−1})][1−ρ(xk, X\{x1, . . . , xk−1, xk+1})] =

g({x1, . . . , xk+1, xk, . . . , xm+1})

The last equality follows sinceX\{x1, . . . , xk, xk+1, . . . , xi} = X\{x1, . . . , xk+1, xk, . . . , xi}
for all i > k + 1. Several applications of path independence then gives

{x1, . . . , xk, xk+1, . . . , xm+1} ∼ {x1, . . . , xk+1, xk, . . . , xm+1} ∼

{x1, . . . , xk+1, xk+2, xk, . . . , xm+1} ∼ · · · ∼ {x1, . . . ., xm+1, xk}.

Since xk = ym+1 it follows by the induction hypothesis that {x1, . . . ., xm+1, xk} ∼
{y1, . . . , ym+1}. The claim then follows by transitivity of ∼. □

A.2. Proof of proposition 2.2.

Proof. If ρ is a marginal SCR, then clearly∑
a∈A

ρ(a,A) =
∑
a∈A

∑
B:a∈B

R(B,A) ≥
∑
B⊆A

R(B,A) = 1.

To prove the converse we will construct a stochastic choice rule R as follows. Let

A ∈ A. Order the alternatives in A as {a1, . . . , an} such that i > j imply ρ(ai, A) ≥
ρ(aj, A). For each A ⊆ X, define

α(A) =


∑

a∈A ρ(a,A)−1∑
a∈A ρ(a,A)−ρ(an,A)

if ρ(an, A) < 1,

1 otherwise.

Then it is clear that α(A) > 0 for all A ⊆ X. Define R(A,A) = α(A)ρ(a1, A) and

R(A \ {a1}, A) = α(A)[ρ(a2, A)− ρ(a1, A)] and

R(A \ {a1, . . . , ak−1}, A) = α(A)[ρ(ak, A)− ρ(ak−1, A)]
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for all n > k ≥ 3. Set

R({ak}, A) = (1− α(A))ρ(ak, A)

for all 1 ≤ k < n and

R({an}, A) = R(A\{a1, . . . , an−1}, A) = α(A)[ρ(an, A)−ρ(an−1, A)]+(1−α(A))ρ(an, A),

and R(B,A) = 0 otherwise. Then for all k < n we have∑
B:ak∈B

R(B,A) =
∑
i≤k

R(A \ {a1, . . . , ai−1}, A) +R({ak}, A) =

=
∑
i≤k

α(A)[ρ(ai, A)−ρ(ai−1, A)]+R({ak}, A) = α(A)ρ(ak, A)+(1−α(A))ρ(ak, A) = ρ(ak, A),

and

∑
B:an∈B

R(B,A) =
∑
i≤n

R(A \ {a1, . . . , ai−1}, A) =

=
∑

i≤n−1

α(A)[ρ(ai, A)− ρ(ai−1, A)] +R({an}, A) =

= α(A)ρ(an−1, A) + α(A)[ρ(an, A)− ρ(an−1, A)] + (1− α(A))ρ(an, A) = ρ(an, A).

Further, we note that

(5)
∑
B⊆A

R(B,A) =
∑
i<n

R(A \ {a1, . . . , ai−1}, A) +
∑
i<n

R({ai}, A) +R({an}, A) =

(6)
∑
i<n

α(A)[ρ(ai, A)− ρ(ai−1, A)] +
∑
i<n

(1− α(A))ρ(ai, A) +R({an}, A) =

(7) α(A)ρ(an, A) + (1− α(A))
∑
i≤n

ρ(ai, A).

To show that that R is a stochastic choice rule, it only remains to prove that

α(A)ρ(an, A)+(1−α(A))
∑

i≤n ρ(ai, A) = 1. There are two cases. First, if ρ(an, A) =

1 then by definition we have α(A) = 1 and we are done. Second, assume that

ρ(an, A) < 1, then α(A) =
∑

a∈A ρ(a,A)−1∑
a∈A ρ(a,A)−ρ(an,A)

and rearranging this equality we obtain

that α(A)ρ(an, A) + (1− α(A))
∑

i≤n ρ(ai, A) = 1. □
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A.3. Proof of theorem 3.2. In the proof of theorem 3.2 we will employ a Möbius

inversion formula for sets. Generally, Möbius inversion is a powerful combinatorial

technique. The most general version of the Möbius inversion formula is formulated

for partially ordered sets and it can be viewed as a generalization of the inclusion-

exclusion formula. We will here apply a special case of the Möbius inversion formula

for collections of sets partially ordered by set inclusion. The following statement is

from Shafer (1976) (see also Brady and Rehbeck (2016, p.1215)).

Lemma A.2. Let f : 2X → R and g : 2X → R be functions then

f(A) =
∑
B⊆A

g(B)

for all A ⊆ X if and only if

g(A) =
∑
B⊆A

(−1)|A\B|f(B)

for all A ⊆ X.

Thus, the Möbius inversion formula allows the underlying distribution function g to

be recovered when the cumulative distribution function g is available (and conversely).

Before proving theorem 3.2 we will show that path independence and varied support

characterize a more general class of logit rules with negative σ allowed. A stochastic

choice function ρ is called a signed multivalued logit if it satisfies equation (1) with

a function σ : 2X → (−∞,∞) (such that σ({a}) > 0 for all a ∈ A). Most of our

results, including theorem 3.2 will follow as corollaries to lemma A.3 below.

Lemma A.3. A marginal SCR is a signed multivalued logit rule if and only if it

satisfies varied support and path independence.

Proof. For each A ⊆ X define

σ(A) =
∑
B⊆A

(−1)|A\B|fρ(B),
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where fρ is defined as in equation (3). Let a ∈ A and {x1, . . . , xk} = X \ a an

enumeration of X \ a. Then it follows that

(8) σ({a}) = fρ({a}) =
k∏

i=1

[1− ρ(xi, X \ {x1, . . . , xi−1})] > 0.

The strict inequality in equation (8) follows since ρ(a,A) < 1 for all a ∈ A and A ⊆ X

by varied support. The Möbius inversion formula in lemma A.2 gives

(9) fρ(A) =
∑
B⊆A

σ(B)

for all A ⊆ X. We use this formula to derive the desired representation of ρ. Let

A ⊆ X and a ∈ A. Let {x1, . . . , xm} = X \ A be an enumeration of X \ A and let

xm+1 = a. Then

[1− ρ(a,A)]fρ(A) = [1− ρ(xm+1, X \ {x1, . . . , xm})]fρ(A) =

m+1∏
i=1

[1− ρ(xi, X \ {x1, . . . , xi−1})] = fρ(A \ a).

By the previous formula, and since fρ({a}) > 0, it follows by an induction argument

that fρ(A) > 0 for all A ⊆ X. Solving for ρ(a,A) (which is possible since fρ(A) > 0)

we thus obtain that

ρ(a,A) =
fρ(A)− fρ(A \ a)

fρ(A)
=

∑
B⊆A:a∈B

σ(B)∑
B⊆A

σ(B)
,

where the last equality follows by equation (9). We next show that σ is unique up

to multiplication by a scalar α (α ≥ 0 if σ is positive). Let σ and σ′ be two logit

representations of ρ. Then

σ′(A)∑
B⊆X σ′(B)

= δfρ(A) =
σ(A)∑

B⊆X σ(B)

for all A ⊆ X. Set α =
∑

B⊆X σ′(B)∑
B⊆X σ(B)

and it is then clear that σ′(A) = ασ(A) for all

A ⊆ X. □

We next derive theorem 3.2 as a corollary to proposition A.3.
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Proof. Let ρ satisfy path independence and positivity. Define σ as in the proof of

proposition A.3 above. By positivity it follows that σ(A) ≥ 0 for all A ⊆ X. The

remainder of the proof is similar to the proof of proposition A.3. □

A.4. Proof of proposition 4.1. The following simple lemma is needed in the proof

of proposition 4.1

Lemma A.4. We have that δfρ(ab) ≥ 0 for all a, b ∈ X.

Proof. First note that fρ(a) = (1−ρ(b, a))fρ(ab) and fρ(b) = (1−ρ(a, b))fρ(ab). We

then have that

δfρ(ab) = fρ(ab)− fρ(a)− fρ(b) =

= fρ(ab)− (1− ρ(b, a))fρ(ab)− (1− ρ(a, b))fρ(ab) =

= fρ(ab)[ρ(a, b) + ρ(b, a)− 1] ≥ 0.

Clearly, δfρ(a) = fρ(a) ≥ 0 for all a ∈ X. Thus, the claim follows. □

We are now ready for the proof of proposition 4.1

Proof. By bundle LCA, hence path independence, and varied support there is by

proposition A.3 a function σ : 2X → (−∞,∞) such that

ρ(a,A) =

∑
B⊆A:a∈B

σ(B)∑
B⊆A

σ(B)

for all a ∈ A and A ⊆ X. We next need to show that σ(a, b) ≥ 0 fo all a, b ∈ X and

that σ(A) = 0 for all A ⊆ X with |A| ≥ 3. That σ(a, b) ≥ 0 for all a, b ∈ X follows

from lemma A.4 and since ρ satisfies varied support (so δfρ(a) > 0 for all a ∈ A).

We next show that σ(A) = 0 for all A ⊆ X with |A| ≥ 3. The proof is by induction

on the cardinality of A. As a base case, let A ⊆ X with |A| = 3, so that A = {a, b, c}
for some a, b, c ∈ X. We have that:

σ(abc) + σ(ab)∑
B⊆abc σ(B)

= ρ(a, abc)− (1− ρ(b, abc))ρ(a, ac) = O(a, b, A) =

[1−ρ(c, abc)]O(a, b, {a, b}) = [1−ρ(c, abc)][ρ(a, ab)−(1−ρ(b, ab))ρ(a, a)] =
σ(ab)∑

B⊆abc σ(B)
.
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Thus, it follows that σ(abc) = 0. Assume that σ(A) = 0 for all A ⊂ X with

|A| ≤ k. Let A ⊆ X and |A| = k+1. Pick a, b, c ∈ A. By bundle LCA it then follows

that

σ(A) + σ(ab)∑
B⊆A σ(B)

= ρ(a,A)− (1− ρ(b, A))ρ(a,A \ b) = O(a, b, A) =

[1−ρ(c, A)]O(a, b, A\c) = [1−ρ(c, A)][ρ(a,A\c)−(1−ρ(b, A\c))ρ(a,A\bc)] = σ(ab)∑
B⊆A σ(B)

.

The first and last equality follows by the induction hypothesis. The second equality

follows by bundle LCA. By the equation above we hence have that σ(A) = 0 and the

claim follows. □
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