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Abstract

This paper explores a relationship between lexicographic and majority preferences

as a novel explanation of preference cycles in choice. Already May (1954) notes that,

among subjects in his experiment who did not display a (majority) preference cycle,

a vast majority ordered alternatives according to an attribute that they found overrid-

ingly important, suggesting that a lexicographic heuristic was used. Our model, Lexico-

graphic Majority, reconciles these findings by providing a unified framework for lexico-

graphic and simple majority preferences. We justify lexicographic majority preferences

by providing an axiomatization in terms of behavioral properties.
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1 Introduction

May (1954) performs an experiment where he asks subjects to choose between pairs of hy-

pothetical marriage partners based on their intelligence, looks and wealth. He notes that,

among subjects in his experiment who did not display a (majority) preference cycle, a vast

majority ordered alternatives according to an attribute that they found overridingly impor-

tant, suggesting that a lexicographic heuristic was used. He concludes:

"What is the significance of this experiment? Of course it does not prove that

individual patterns are always intransitive. It does, however, suggest that where

choice depends on conflicting criteria, preference patterns may be intransitive

unless one criterion dominates."

Thus, already May (1954) seems to suggest an apparent dichotomy between lexicographic

and majority preferences. Preference cycles, based on the majority rule, have since May

(1954) been well-documented in the literature (see e.g. Russo and Dosher (1983); Zhang,

Hsee, and Xiao (2006)). In accordance with May’s intuition, the aim of this paper is to

propose a model of choice that accommodates (majority) preference cycles, but is flexible

enough to allow some attributes to be overridingly important.

To accommodate preference cycles as in May (1954), our model, Lexicographic Majority

(LM), allows a non strict ranking of attributes. In the framework of classical lexicographic

preferences the decision maker (DM) strictly orders attributes and then evaluates alterna-

tives by proceeding sequentially through the ordering. In contrast we allow a DM to assign

the same rank to several attributes. The DM then proceeds sequentially through equiva-

lence classes of attributes by comparing alternatives using a majority heuristic restricted to

each equivalence class. If a majority of attributes, within an equivalence class, supports an

alternative in favor of the other, the DM stops and chooses the alternative.

Majority preferences (May, 1952) and lexicographic preferences (Fishburn, 1975, 1976;

Petri and Voorneveld, 2016) are obtained as polar extremes of Lexicographic Majority. If

the attribute ranking of the DM is such that no pair of attributes shares a rank, she uses

a lexicographic rule. On the other hand, if the agent thinks that all attributes are equally

important a majority rule is used. In this way, our theory provides a unified perspective on

lexicographic and simple majority preferences.

To illustrate the model, consider as an example an agent that needs to book a hotel room

using an online service (such as hotels.com or booking.com). She evaluates hotels with the

aid of a website that uses four attributes {Price,Proximity to City,Customer rating,Service}.

Suppose that each attribute has a value between 1 and 10 and that the DM’s ranking over

attributes is Price Â Proximity to City ∼ Customer rating ∼ Service. Consider two hotels x =
(5.5,8,5,7) and y = (5.1,6,8,8). A DM with LM preferences may then reason that she prefers
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Figure 1: An illustration of the LM rule applied to hotel x and y .

y to x. Based on price, she is indifferent since she only notices differences in attributes

larger than one (our framework allows coordinate relations to be semi-orders). Looking

further at other attributes, on the one hand x is closer to the city, but on the other hand

y has a better customer rating and service, and since these three attributes are deemed

equally important and a majority of them support hotel y , the DM prefers hotel y to x. The

comparison of hotel x and y using the LM rule is illustrated in figure 1.

To see how preference cycles arises within our framework, suppose there is also a third

hotel z with characteristics z = (5,7,4,9). An agent using an LM rule as above prefers z to y

and y to x. Transitivity would imply that z is preferred to x, but since a majority of attributes

among {Proximity to City,Customer rating,Service} support x in favor of z, it follows that x

is preferred to z. The preference cycle above results from the use of a majority rule. A

notable feature of our model is that such cycles arises endogenously. This is in contrast

from standard majority preferences that necessarily exhibit such preference cycles, or from

lexicographic preferences that rules them out.

The preference rule above is justified by developing an axiomatic model of it. The main

representation result is in terms of three simple properties: a weak transitivity requirement,

noncompensation and majority robustness. Noncompensation basically says that high lev-

els on some attributes is not enough to compensate for low levels on other attributes. The

third axiom, majority robustness, is novel and is a stronger form of robustness in Petri and

Voorneveld (2016). It roughly requires this: Suppose x is preferred to y and that a majority

of its coordinates indicate that the former is better. Then the decision maker is allowed a

change of mind turning one coordinate in favor of x to an indifference: even if one less ar-

gument supports the preference, the fact that we started with many arguments in favor of

x suggests that such a small change is not enough to give rise to the opposite preference.

As a further justification of the model, we relate it to the important class of weighted

majority preferences. It turns out that lexicographic majority preferences exactly coincide

with weighted majority rules satisfying majority robustness. Intuitively, majority robust-

ness forces the weight of a low ranked attribute to stay below the sum of weights of higher
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ranked attributes. An immediate corollary is a characterization of lexicographic preferences

as weighted majority rules satisfying majority robustness.

To the best of our knowledge the class of preferences that we study in this paper is new.

We are not aware of any study providing direct evidence on the use of lexicographic ma-

jority preferences in decision making. However as already mentioned May (1954), Russo

and Dosher (1983) and Zhang, Hsee, and Xiao (2006) provide empirical evidence on use of

simple majority rules. The work by Russo and Dosher (1983) suggests that the rule is used

to save cognitive effort in decision tasks involving evaluation of multiple attributes. More-

over, further indirect evidence on the lexicographic majority rule is in Yee, Dahan, Hauser,

and Orlin (2007), and references therein, where evidence on the use of lexicographic pref-

erences is given.

The rest of the paper is organized as follows. The model is formulated in section 2. We

state and discuss our axioms in section 3 . The first characterization theorem is in section

4, where we also discuss some corollaries to the result. Section 5 shows that LM accom-

modates certain preferences cycles observed in choice. In section 6 we discuss an inter-

pretation of lexicographic majority as a search procedure. Section 7 gives the second main

result, a characterization in terms of weighted majority preferences. Finally, we conclude

in section 8.

2 The Model

In this section we introduce our model. The notation is standard and is in appendix A.

From here on, Â (a preference relation) is an asymmetric binary relation on a nonempty

product set X =×i∈I Xi with finitely many (but at least two) attributes i ∈ I . Before giving a

formal definition of lexicographic majority preferences we introduce some notation.

Let X be a set. A partition is a collection of nonempty subsets of X , denoted P , with

generic elements denoted S,R ∈ P , such that
⋃

S∈P S = X and S ∩ R = ; for all distinct

S,R ∈ P . If for each i ∈ I an asymmetric relation Âi on Xi is given, set A(x, y) := {i ∈ A :

xi Âi yi } for every subset A ⊂ I . A(x, y) is the support of x in A (relative to y). Let further

P(x, y) := {i ∈ I : xi Âi yi } and P(y, x) := {i ∈ I : yi Âi xi } for all x, y ∈ X . The set P(x, y) is the

total support of x, relative to y , among all attributes in I . We are now ready for the formal

definition of LM preferences.

Definition 2.1. A preference relationÂon a product set X =×i∈I Xi is lexicographic majority

(LM) if there are asymmetric relations Âi on Xi for all i ∈ I , a partition P of I and a linear

order <1 on P such that for all x, y ∈ X , x Â y if and only if there is a S ∈ P such that

|S(x, y)| > |S(y, x)| and |R(y, x)| > |R(x, y)| for no R ∈P with R <1 S. /
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The partition P corresponding to a lexicographic majority relation in definition 2.1,

is called the indifference partition of Â. By letting P = {{k} : k ∈ I } be the finest partition

consisting of only singletons {k} we obtain lexicographic preferences as in Fishburn (1975).

Simple majority preferences arises by letting P = {I } be the coarsest partition on I .

Informally, a decision maker (DM) with lexicographic majority preferences is an agent

using a decision heuristic. She first ranks attributes by allowing ties, in such a way that

the ranking induces a partition of the set of attributes. Equally ranked attributes belong to

the same part/class. She then compares pairs of elements x, y by proceeding sequentially

through the ranking of attributes. If several attributes share the first rank, alternative x is

better than y if a majority of attributes support x. If the DM is still indifferent, she pro-

ceeds and compares alternatives by considering attributes with rank two. She continues in

this fashion until one element dominates the other, within an equivalence class, using the

majority heuristic. If the whole list of attributes is exhausted, and equally many attributes

support the alternatives, she is considered indifferent between x and y .

In contrast to a lexicographic rule, a decision maker using a LM rule is allowed to be in-

different even though there are attributes in support of the alternatives. If several attributes

share a rank, ties are broken using the simple majority relation.

3 Axioms and discussion

Let Â be an asymmetric binary relation on X . To characterize and identify the preference

rules described in section 2, we need to find Âi on the coordinate sets Xi for each i ∈ I such

that definition 2.1 holds. Our following lemma shows that these coordinate relations Âi for

each i ∈ I are unambiguously defined in terms of the primitive relation Â:

Lemma 3.1. If Â is lexicographic majority with partition P and linear order <1, relations Âi

in definition 2.1 satisfy, for all i ∈ I and xi , yi ∈ Xi :

xi Âi yi ⇔ for all z−i ∈ X−i : (xi , z−i ) Â (yi , z−i ). (1)

The proof of lemma 3.1 is in appendix C. Given the primitive relation Â we define for

each i ∈ I candidate relations Âi on Xi by equation (1). We also define sets P(x, y) and

A(x, y) in terms of candidate relations Âi . Note that lemma 3.1 implies that these relations

and sets are well defined for LM preferences.

We now state and briefly discuss the axioms used in our characterization of lexicographic

majority preferences:
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A1 Noncompensation: for all x, y, w, z ∈ X ,

[
P(x, y) = P(w, z),P(y, x) = P(z, w)

] ⇒ [
x Â y ⇔ w Â z

]
.

A2 Restricted negative transitivity: Â is negatively transitive on some product set X ′ =
×i∈I {ai ,bi } ⊂ X where ai Âi bi for each i ∈ I .

A3 Majority robustness: for all x, y ∈ X with |P(x, y)| > |P(y, x)|,

a) if x Â y then there is an i ∈ P(x, y) with (zi , x−i )% (zi , y−i ) for all zi ∈ Xi .

b) if x ∼ y then there is an i ∈ P(x, y) with (zi , x−i ) ∼ (zi , y−i ) for all zi ∈ Xi .

Following, among others, Fishburn (1976, p. 395) coordinate i is called essential if there

are ai ,bi ∈ Xi with ai Âi bi and it is assumed throughout that each coordinate is essential.1

Noncompensation A1 is a quite standard axiom in a literature on noncompensatory

preferences. (Fishburn, 1975, 1976; Bouyssou and Vansnick, 1986). It highlights the ordi-

nal character of noncompensatory preferences. It should however be noted that there are

preferences with a similar ordinal character as noncompensatory preferences that are ruled

out by the noncompensation axiom. Particular examples include the class of concordance

relations in Bouyssou and Pirlot (2005, 2007).2

Restricted negative transitivity A2 is similar to, but stronger than, restricted transitivity

in Petri and Voorneveld (2016). Transitivity requirement A2 is imposed for several reasons.

Firstly, a DM using a lexicographic majority relation ranks attributes by allowing ties. This in

particular implies that such a DM uses an order with transitive indifference on attributes.

Intuitively, "equally important" is a transitive relation on the set of attributes. Secondly,

transitivity of the induced equivalence ∼ facilitates our proof technique. We use transitivity

of ∼ at several places in the proof of theorem 4.1. Thirdly, there are important non-technical

reasons to assume restricted negative transitivity compared to negative transitivity on all of

X . For example it implies that the setting above is general enough to account for intransitive

preferences. Similarly to Fishburn (1976) and Petri and Voorneveld (2016) the current set-

ting accommodates intransitive lexicographic semiorders as in Tversky (1969) and Manzini

and Mariotti (2012).

1For a preference Â satisfying the noncompensation axiom A1 this is without loss of generality. If coordi-
nate i is not essential then x Â y if and only if (zi , x−i ) Â (zi , y−i ) for all zi ∈ Xi . Hence we may consider the
restriction of Â to {zi }×X−i for some zi ∈ Xi . Roughly speaking, we may ‘forget’ about inessential coordinates.
All axioms assumed in this paper impose restrictions only in terms of essential coordinates.

2See section 5.2 in Bouyssou and Pirlot (2005) for a further discussion around this issue. Essentially, the
issue is that noncompensation "ignores" coordinates that are not essential.
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Part a) of majority robustness is similar to robustness 3 in Petri and Voorneveld (2016),

where an interpretation of robustness is given. The interpretation given there applies to the

current setting as well. Basically majority robustness requires that: If a majority of attributes

are in favor of x, then a preference of x over y should be robust to a small change of mind,

turning an attribute in favor of x to an indifference.

By the formulation of majority robustness it is clear that majority robustness implies

robustness, and by further inspecting the proof of the main result, it can be checked that

majority robustness A3 can be replaced with the weaker robustness axiom in a character-

ization of LM preferences. However, due to the intuitive appeal of the cardinal condition

|P (x, y)| > |P (y, x)|, we choose majority robustness in a characterization of LM preferences.

So what is the intuition behind part b) of majority robustness? It is indeed quite sim-

ilar to that of part a), and roughly requires that for alternatives x and y , such that many

attributes are in favor of x and only a few in favor of y , then an indifference between x and

y is robust to a small change of mind, turning an attribute in favor of x to an indifference.

Assuming decisiveness A7 (see section B) part b) of majority robustness vacuously holds.

Since decisiveness is an axiom that we try to relax, we need part b) of majority robustness.

It is evident that every lexicographic majority relation satisfies part b) of majority ro-

bustness, since if x ∼ y , then |S(x, y)| = |S(y, x)| for all S ∈ P , so |P(x, y)| = |P(y, x)|. Part b)

of majority robustness is hence implied by the following decisiveness property:

A4 Majority decisiveness: for all x, y ∈ X , if |P(x, y)| 6= |P(y, x)| then x Â y or y Â x.

We could replace b) of majority robustness by axiom A4 in a characterization of lexico-

graphic majority preferences.

4 The characterization theorem

Our first main result, theorem 4.1, characterizes lexicographic majority preferences Â using

logically independent axioms A1, A2 and A3. We also show that the parameters ((Âi )i∈I ,<1

,P ) of a lexicographic majority preference are unique. As corollaries to theorem 4.1 we

obtain characterizations of lexicographic and simple majority preferences.

Theorem 4.1. Let Â be an asymmetric binary relation on X =×i∈I Xi . The preference relation

Â is lexicographic majority with triple ((Âi )i∈I ,<1,P ) if and only if Â satisfies noncompensa-

tion A1, restricted negative transitivity A2 and majority robustness A3. Furthermore the triple

((Âi )i∈I ,<1,P ) is unique.

3Robustness requires that: for all x, y ∈ X with P(y, x) 6= ; and |P(x,y)|
|P(y,x)| ≥ 2, if x Â y , then there is an i ∈ P(x, y)

with (zi , x−i )% (zi , y−i ) for all zi ∈ Xi .
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Necessity and logical independence of the axioms is proven in appendix C.4 and ap-

pendix E. The proof of sufficiency is below. It is straightforward, although quite tedious. We

give a brief outline: As a preliminary step, given the axioms, we define a weak order <0 on

I , by declaring a coordinate i to be less than j if and only if the corresponding basis vector

ei is preferred to e j .4 Now, since weak decisiveness is not at our disposal (as is the case

for lexicographic preferences), <0 is not necessarily a complete order. However a standard

lemma stated in appendix A implies that there is a linear order <1 on the set of equivalence

classes P of <0. The main steps of the proof (step 1-5) then show that <1 and P coincides

with a linear order and partition of a lexicographic majority rule. As a first step it is shown

that Â restricted to pairs of elements e A and eB where A and B are subsets of a member of

P coincides with majority preferences. In the second step, with the crucial help of majority

robustness, it is shown that the ranking of any pair of vectors e A and eB in X ′, such that no

element of A and B belong to the same member of P , is determined by the lexicograph-

ically highest ranked set in P that A or B intersect. Step 3 and step 4 then show that we

can extend the lexicographic majority order to situations where both A and B intersect the

same set in P . Lastly, in step 5, noncompensation extends the ordering on X ′ to all of X .

Proof. (Sufficiency) Assume that X =×i∈I Xi where |I | = n. By assumption each set Xi con-

tains two elements xi , yi ∈ Xi such that xi Âi yi for all i ∈ I . Hence we may define a subset

X ′ of X such that X ′ =×i∈I {xi , yi } and xi Âi yi for all i ∈ I . For each subset A of I , define an

element e A ∈ X ′ by (e A)i = xi if i ∈ A and (e A)i = yi if i ∈ I \A. If A is singleton we will abuse

notation somewhat and write e A = e{ j } = e j .

Define a binary relation <0 on I by i <0 j if and only if ei Â e j . Then <0 is a weak or-

der since <0 inherits negative transitivity and asymmetry from Â on X ′. Denote by ∼0 the

equivalence relation induced by <0 and set P = I/∼0. Define <1 on P = I/∼0 by S <1 R if and

only if s <0 r for some s ∈ S,r ∈ R. Then <1 is well-defined and by lemma A.1 it follows that

<1 is a linear order on P .

We now show that ((Âi )i∈I ,<1,P ) is a triple of asymmetric relations, a linear order and a

partition making Â a lexicographic majority preference.

STEP 1: Let S ∈ P and A,B ⊂ S. We claim that e A Â eB if and only if |A| > |B |. It suffices to

show that for all A,B ⊂ S: |A| = |B | =⇒ e A ∼ eB ,

|A| > |B | =⇒ e A Â eB .

4The basis vectors e A for some set A ⊂ I are defined in the first paragraph of the proof of theorem 4.1.
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We first show that e A ∼ eB if |A| = |B | and A,B ⊂ S. For a subset A of S, denote the set

obtained by swapping an element i ∈ A to an element j ∈ S\A (if possible) by A{i↔ j }. Now

since ei ∼ e j for all i , j ∈ S, it follows by noncompensation A1 that e A{i↔ j } ∼ e A. Since the

cardinalities of B and A are equal we can obtain B from A by performing a finite number

of such swappings. It hence follows by transitivity of ∼ (which in turn follows by restricted

negative transitivity A2) that eB ∼ e A.

We now show that e A Â eB if |A| > |B | and A,B ⊂ S. The proof is by induction on |A| − |B |.
Since Â satisfies noncompensation A1 it follows that e A Â eB whenever B ⊂ A and |A| =
|B |+1. Now let A,B be arbitrary subsets of S such that |A| = |B |+1. Let j ∉ B then by above

eB∪{ j } Â eB . Since |B ∪ { j }| = |A| it follows by the previous paragraph that e A ∼ eB∪{ j }. Then

e A ∼ eB∪{ j } and eB∪{ j } Â eB together with negative transitivity A2 of Â gives e A Â eB .

As induction hypothesis let k ∈ N and assume that e A Â eB whenever |A| = |B | +k and

A,B ⊂ S. Let A,B be subsets of S such that |A| = |B | +k +1. If no such sets exist the claim

follows, otherwise consider the set A\{ j } for some j ∈ A. Then |A\{ j }| = |B | +k and hence

it follows by the induction hypotheis that e A\{ j } Â eB . But |A| = |A\{ j }| + 1 and hence the

base case above gives e A Â e A\{ j }. Finally, e A\{ j } Â eB and e A Â e A\{ j } together with restricted

negative transitivity A2 gives e A Â eB .

STEP 2: For every R ∈P let

U (R,<1) := ⋃
{S∈P |R<1S}

S and L(R,<1) := ⋃
{S∈P |S<1R}

S.

Let R ∈ P . We will show that eB Â e A for every A ⊂ U (R,<1) and B ⊂ R. As a first step we

show that ek Â e A for every A ⊂U (R,<1) and k ∈ R.

If A ⊂ U (R,<1) and |A| = 1, then A = { j } for some j ∈ I and A ⊂ S for some S ∈ P such

that R <1 S and hence by definition of <1 it follows that ek Â e j = e A. The base case thus

follows. Assume that the statement is true for some positive integer m, i.e. for every A ⊂ I

such that |A| = m and A ⊂U (R,<1) we have ek Â e A. Let A be a set such that A ⊂U (R,<1)

and |A| = m +1. If no such set exists the claim follows, otherwise assume by contradiction

that e A º ek , then by axiom A3 it follows that e A\{i } º ek for some i ∈ A. But |A\{ j }| = m and

A\{ j } ⊂U (R,<1) and hence this contradicts the induction hypothesis. The claim follows.

Now let A,B ⊂ I be nonempty sets such that B ⊂ R and A ⊂ U (R,<1). By the previous

claim we have that e j Â e A for all j ∈ B . The Pareto lemma D.1 implies that eB Â e j for all

j ∈ B and hence by negative transitivity A2 we have eB Â e A.

STEP 3: Let A,B ⊂ I be such that there is a R ∈ P such that |A ∩R| > |B ∩R| and A ∩ S =
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B ∩S =; for all S <1 R. We aim to show that this implies that e A Â eB .

Without loss of generality assume that A and B are such that (A∩R) ⊃ (B ∩R). If not, let A′

be such that |A′∩R| = |A∩R|, A′∩R ⊃ B ∩R and A′∩ (I \R) = A∩ (I \R), then step 1 implies

that e A′ ∼ e A and hence e A Â eB if e A′ Â eB .

Now since (A ∩ R) ⊃ (B ∩ R) noncompensation A1 implies that e A Â eB if e A\(B∩R) Â
eB∩(I \R). Thus we may further reduce to the case where B∩R =;. But then B ⊂U (R,<1) and

hence since A∩R ⊂ R by step 2 it follows that e A∩R Â eB . The Pareto lemma in appendix D.1

gives e A % e A∩R . Since e A % e A∩R and e A∩R Â eB restricted negative transitivity A2 implies

that e A Â eB .

STEP 4: We show that if A,B ⊂ I are such that there is a R ∈ P with |A ∩R| > |B ∩R| and

|A∩S| = |B ∩S| for all S <1 R, then e A Â eB .

To show this, let C ⊂ L(R,<1) be any set such that |C ∩ S| = |B ∩ S| = |A ∩ S| for all S ∈ P

such that S <1 R. Set (e ′
A)i = (eC )i if i ∈ L(R,<1) and set (e ′

A)i = (e A)i otherwise, similarly

define e ′
B , then by applying step 1 and restricted negative transitivity A2 several times (an

induction argument) it follows that e A ∼ e ′
A and eB ∼ e ′

B and hence e A Â eB if e ′
A Â e ′

B . By

noncompensation A1 we have that e ′
A Â e ′

B if e A\L(R,<1) Â eB\L(R,<1). But the sets A\L(R,<1)

and B\L(R,<1) are such that the premises of step 3 are satisfied, hence by step 3 it follows

that e A\L(R,<1) Â eB\L(R,<1). Thus e A Â eB .

STEP 5: Let x, y ∈ X be such that there is R ∈ P such that |R(x, y)| > |R(y, x)| and |S(y, x)| >
|S(y, x)| for no S <1 R. Pick the smallest R ∈ P (according to <1) such that |R(x, y)| >
|R(y, x)|, then |S(x, y)| = |S(y, x)| for all S <1 R. If we set A = {i ∈ I : xi Â yi } and B = {i ∈
I : yi Â xi }, then |A∩S| = |B ∩S| for all S <1 R and |A∩R| > |B ∩R| and hence e A Â eB by step

4. Noncompensation A1 implies that x Â y .

Conversely if x Â y then we cannot have |S(x, y)| = |S(y, x)| for all S ∈P , since by apply-

ing step 1 and transitivity of ∼ several times we would have x ∼ y . Thus |R(x, y)| 6= |R(y, x)|
for some R ∈ P . Let R ∈ P be the smallest such R (according to <1). If |R(x, y)| < |R(y, x)|,
then y Â x by the previous paragraph, contradicting asymmetry of Â. Hence |R(x, y)| >
|R(y, x)|.

Uniqueness: Let Â be an LM preference with linear order <1 on a partition P and with

asymmetric relations (Âi )i∈I satisfying definition 2.1. Assume that there is another triple

((Â′
i )i∈I ,<′

1,P ′) such that definition 2.1 holds. Since Â is lexicographic majority it follows

by lemma 3.1 that xi Âi yi ⇔ for all z−i ∈ X−i : (xi , z−i ) Â (yi , z−i ) and xi Â′
i yi ⇔ for all z−i ∈

X−i : (xi , z−i ) Â (yi , z−i ) so we have that xi Âi yi if and only if xi Â′
i yi . Hence (Âi )i∈I = (Â′

i
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)i∈I .

To show that P =P ′ it suffices to note that for any LM preference with partition P we

have for all i , j ∈ I : ei ∼ e j if and only if i , j ∈ R for some R ∈ P . Since P = P ′ uniqueness

of <1 follows if we show that for all S,R ∈ P : S <1 R if and only if S <′
1 R. Let S,R ∈ P with

S <1 R. Then ei Â e j for all i ∈ S and for all j ∈ R and thus S <′
1 R. By a symmetric argument

S <′
1 R implies S <1 R. Hence <1=<′

1.

5 Explaining preference cycles

In the introduction we showed that LM preferences explain well-documented preference

cycles in multi criteria decision-making. The goal of this section is to identify conditions

on LM preferences resulting in such cycles. Consider the following example adapted from

May (1954).

Example 5.1. Consider LM preferences on X =×i∈I Xi with Xi = {1,2,3} and 3 Âi 2 Âi 1 for

all i ∈ I . Assume P = {I }, i.e. all attributes are equally important. Let three alternatives

a,b,c be defined as follows:

a = (1,2,3),

b = (3,1,2),

c = (2,3,1).

Using the LM rule described above results in a preference cycle: a Â b Â c Â a. /

In an experiment conducted by May (1954) 17 out of 62 subjects displayed a cycle as

in example 5.1. Among the 45 subjects who did not display a preference cycle 33 subjects

ordered alternatives according to a criterion that they found overridingly important. Thus

already May (1954) sees a dichotomy between lexicographic and simple majority prefer-

ences. Indeed, as suggested by May’s experiment, subjects display dissimilar rankings of

alternatives due to subjective differences in P and <0. Subjects who order alternatives

cyclically use a partition P = {I } and consider all attributes equally important, whereas

subjects who order alternatives according to an overridingly important attribute, use a par-

tition with {i } ∈P for some i ∈ I .

In addition to strict preference cycles, lexicographic majority accounts for preference

cycles resulting from intransitivity of indifference ∼. Fishburn (1970b) discusses an exam-

ple similar to example 5.2 below and surveys a literature on preferences with intransitive

indifference.
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Example 5.2. Let Â be defined as in example 5.1 and consider the following three alterna-

tives:

a = (1,2,1),

b = (2,1,1),

c = (1,3,1).

Note that a ∼ b and b ∼ c, so transitivity of ∼ would imply that a ∼ c, but c Â a so ∼
cannot be transitive. /

Given the examples above it would be desirable to know exactly when a DM with lex-

icographic majority preferences exhibit such preference cycles. It turns out that the logic

of the examples carries over to a quite general setting. Proposition 5.1 roughly shows that

a strict preference cycle occurs if and only if a DM regards a pair of "important attributes"

as equally important. Similarly a cycle resulting from intransitive indifference occurs if and

only if the DM finds two attributes equally important.

Proposition 5.1. Let Â be a lexicographic majority relation on product set X = ×i∈I Xi with

partition P , linear order <0 on P and negatively transitive relations Âi on Xi for all i ∈ I .

Let X be such that

for all i ∈ I , there are ai ,bi ,ci ∈ Xi with ai Âi bi and bi Âi ci . (2)

a) Â is transitive if and only if |P | = 1 for all P ∈ P \{P∗} and |P∗| ≤ 2, where P∗ =
max(P ,<1).5

b) Â is negatively transitive if and only if |P | = 1 for all P ∈ P , i.e. if and only if Â is

lexicographic.

Proof. For statement a) a similar construction as in example 5.1 implies that |P | ≤ 2 for all

P ∈ P . Assume there is P ′ ∈ P with |P ′| = 2 and P ′ <1 P∗, i.e. P ′ = {i , j } and i , j ∈ I . Let

k ∈ P∗. Since there are ai ,bi ,ci ∈ Xi with ai Âi bi and bi Âi ci define three alternatives by:

x =(bi ,c j , ak , x−i j k ),

y =(ci , a j ,bk , y−i j k ),

z =(ai ,c j ,ck , z−i j k ),

5Denote by max(P ,<1) the element P∗ ∈P such that P <1 P∗ for all P ∈P .
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Grand set of attributes I

... and then N3

...and then N2

Search N1

Figure 2: An illustration of the search procedure in proposition 6.1.

where x−i j k = y−i j k = z−i j k . Then it is clear that x Â y and y Â z. But since z Â x we have

a contradiction to Â being transitive.

The "only if"- part of statement b) follows by the only if part of statement a) and by

using a similar construction as in example 5.2. The "if"- parts of statement a) and b) are

straightforward to verify and hence omitted.

6 Lexicographic majority as a search procedure

There is another appealing interpretation of lexicographic majority preferences (suggested

to me by Mark Voorneveld) in terms of a decision maker searching over criteria. Let I be

a set. A collection of nonempty subsets N of I is nested if I ∈ N , and if for all M , N ∈
N either M ⊂ N or N ⊂ M . The following proposition gives an equivalent way to express

lexicographic majority preferences.

Proposition 6.1. A preference relation Â on a product set X is lexicographic majority if and

only if there are asymmetric relations Âi on Xi for all i ∈ I and a nested collection of sets N of

I such that for all x, y ∈ X , x Â y if and only if there is a N ∈N such that |N (x, y)| > |N (y, x)|
and |M(y, x)| > |M(x, y)| for no M ∈N with M ⊂ N .

The proof of proposition 6.1 is straightforward but provided in appendix C for complete-

ness. The proposition above suggests the following alternative procedural interpretation of

LM preferences. A decision maker compares alternatives by searching over attributes. First

the DM considers a possibly small subset N (as in figure 2) of the grand set of attributes I . If

one element dominates the other according to a majority of criteria in N then that element

is chosen. Otherwise searching for additional evidence supporting the alternatives enlarges

the considered set of attributes. The decision maker hence evaluates alternatives by con-
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sidering a larger set of attributes M ⊃ N . If one element dominates the other according to a

majority of criteria in M then that element is chosen. Otherwise the search continues in a

similar manner as before.

7 A characterization in terms of weighted majority prefer-

ences

Lexicographic majority preferences is a subset of the class of weighted majority preferences,

as proposition 7.1 below shows. In fact, it turns out that lexicographic majority preferences

coincide with weighted majority preferences satisfying majority robustness.

Weighted majority preferences are similar to weighted majority rules in social choice

theory. A preference relation is weighted majority if x is preferred to y if and only if the sum

of weights in support of x is greater than the sum of weights in support of y . The formal

definition is as follows:

Definition 7.1. A preference relationÂ on X =×i∈I Xi is a weighted majority relation if there

are weights wi ∈R for all i ∈ I such that for all x, y ∈ X :

x Â y if and only if
∑

i∈P(x,y)
wi >

∑
i∈P(y,x)

wi . (3)

/

Lemma 7.1 below characterizes LM preferences as weighted majority preferences satis-

fying a weight constraint (4). The necessity of such a constraint is clear. If Â is a LM rule,

then in order for (3) to hold, the weight assigned to a low ranked attribute must be greater

than the sum of weights assigned to attributes with a strictly higher (lexicographic) rank.

Consider for example the case of purely lexicographic preferences on Rn . Then (1,0, ...,0) Â
(0,1, ...,1) and representability by a weighted majority rule requires w1 > w2 + ...+ wn . In

lemma 7.1 we show that such a condition is necessary and sufficient for the representabil-

ity of LM preferences by weighted majority rules. We then apply lemma 7.1 to obtain our

main result of this section, theorem 7.2.

Lemma 7.1. Let Â be an asymmetric binary relation on product set X = ×i∈I Xi . Let P be a

partition of I and let <1 be a linear order on P . The following two claims are equivalent:

a) Â is a lexicographic majority preference relation with respect to this ordered partition.

b) Â is a weighted majority rule with positive weights (wi )i∈I satisfying (b1) wi = w j if i

and j belong to the same element of the partition and (b2) for each i ∈ I , if R ∈P is the
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partition element containing i , then

wi >
∑

j∈⋃
{S∈P :R<1S} S

w j . (4)

Given the lemma above, we obtain the following characterization of lexicographic ma-

jority preferences.

Theorem 7.2. Let Â be an asymmetric binary relation on X =×i∈I Xi . Then Â is a weighted

majority rule satisfying majority robustness A3 if and only if Â is a lexicographic majority

rule.

Proof. Let Â be a weighted majority rule satisfying majority robustness A3 . Define a re-

lation <0 on I by i <0 j if and only if wi > w j . It is then straightforward to verify that <0

is a weak order. Let ∼0 on I be the equivalence relation induced by <0 and denote by P

the partition corresponding to ∼0. Further define a relation <1 on P as in lemma A.1. By

lemma A.1 it then follows that <1 is a linear order on P . By definition of <1 and P it fol-

lows that wi = w j whenever i , j ∈ S for some S ∈ P . To apply lemma 7.1, and conclude

that Â is a lexicographic majority rule, it hence suffices to show that equation (4) holds.

Let U (R,<1) :=⋃
{S∈P |R<1S} S for all R ∈P . Assume contrary to equation (4) that there is an

R ∈P such that

wi ≤
∑

j∈U (R,<1)
w j

for some i ∈ R. Then eU (R,<1) % ei . By repeatedly applying majority robustness A3 (an in-

duction argument) we get ek % ei for some k ∈ S where R <1 S. But by definition of <1 we

have wi > wk and hence ei Â ek . A contradiction.

The other direction of the theorem follows by lemma 7.1, which shows that every lexi-

cographic majority relation is weighted majority (with weights satisfying equation (4)). Fi-

nally, majority robustness of lexicographic majority preferences follow by theorem 4.1.

Theorem 7.2 implies that the class of weighted majority preferences contains the class

of lexicographic majority preferences. However, lexicographic majority preferences and

weighted majority preferences are distinct preference structures. Example E .3 in appendix

E shows that there are weighted majority preferences on sets with three binary factors that

fail to satisfy majority robustness. Hence, by characterization theorem 4.1, they cannot be

lexicographic majority. Every weighted majority rule satisfies noncompensation A1 and re-

stricted negative transitivity A2. By restricting attention to X with exactly two factors corol-

lary B.3 shows that the classes coincide.

LM preferences satisfying weak decisiveness A7 are lexicographic. Hence theorem 7.2

gives us yet another characterization of lexicographic preferences:

15



Corollary 7.3. An asymmetric binary relation Â is lexicographic if and only if Â is weighted

majority and satisfies weak decisiveness A7 and majority robustness A3.

8 Concluding remarks

We considered lexicographic preferences with a non-strict attribute ranking, using a ma-

jority tie breaking heuristic within each indifference class. There are many other plausible

tie breaking rules that a decision maker could use. The main technical difficulty, when

identifying such preferences is to find properties such that the indifference partition arises

endogenously. Also, it is difficult to test a model were the partition is taken as part of the

characterizing properties, since it requires the observer to know exactly what partition the

decision maker uses when making choices.

It would be interesting to see what other type of heuristics one could obtain without

assuming an exogenous indifference partition. In an ongoing project we study a class of

preferences called Lexicographic Pareto. Instead of using a simple majority relation within

each indifference class, a decision maker with LP preferences uses a Pareto heuristic. It can

easily be checked that LM and LP preferences are distinct preference classes: A characteriz-

ing property of LM preferences is restricted negative transitivity, and no Pareto relation (on

a product set with more than three factors) satisfies this property.
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A Appendix: Notation and preliminaries

This section contains standard definitions/notation for binary relations, product sets and

partitions. The notation follows, among many others, Fishburn (1975, 1976) and Bouyssou

and Vansnick (1986). At the end of this section we state lemma A.1, an important ingredient

in the preliminary step of our characterization result.

A.1 Binary relations

A binary relation Â on a set X is a subset of X × X . If (x, y) ∈Â, we write x Â y . For x, y ∈ X ,

define

x ∼ y ⇔ (not x Â y and not y Â x) and x % y ⇔ (x ∼ y or x Â y). (5)

A binary relation Â on a set X is: irreflexive if, for all x ∈ X : not x Â x, asymmetric if, for all

x, y ∈ X : x Â y implies that not y Â x, transitive if for all x, y, z ∈ X : x Â y and y Â z imply

x Â z, negatively transitive if for all x, y, z ∈ X : x Â y implies x Â z or z Â y , a weak order if it

is asymmetric and negatively transitive, a linear order if it is a weak order, and for all x, y ∈ X

with x 6= y , either x Â y or y Â x.

Asymmetry and negative transitivity imply transitivity: let x, y, z ∈ X have x Â y and

y Â z. By negative transitivity, x Â z or z Â y . Asymmetry rules out z Â y , so x Â z. Negative

transitivity of Â implies transitivity of ∼: let x, y, z ∈ X have x ∼ y and y ∼ z. If x � z then

w.l.o.g. x Â z and by negative transitivity x Â y or y Â z, a contradiction.

A.2 Sets and product sets

R is the set of real numbers. For subsets A and B of a set I (A ⊂ I ,B ⊂ I ), we write A \ B =
{a ∈ A : a ∉ B} and denote the complement of A w.r.t. I as I \ A or Ac if I is evident from the

context. |A| is the cardinality/number of elements of a finite set A.

For each i in a nonempty index set I , let Xi be a set. Denote their product set by

X = ×i∈I Xi = {(xi )i∈I : xi ∈ Xi for each i ∈ I }. As usual, we refer to elements i ∈ I as in-

dices, coordinates, or attributes. Conventional notational shortcuts are used. For instance,

for i ∈ I , X−i =× j∈I \{i }X j . Let i , j ∈ I and A ⊂ I with i ∈ A. Elements x = (xk )k∈I ∈ X may be

denoted by (xi , x−i ) or (xi , x j , x−i j ) or (xA, x−A) = (xA\{i }, xi , x−A) if we want to stress coordi-

nates i , j , or those in A.
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A.3 Partitions and equivalence relations

A binary relation ∼ on X is an equivalence relation if ∼ is reflexive, symmetric 6 and tran-

sitive. The equivalence class of x ∈ X is defined as E(x) := {y ∈ X : y ∼ x}. We will use fre-

quently, without proof the following well known fact about equivalence relations and parti-

tions: Every equivalence relation gives rise to a partition in the sense that P = {E(x) : x ∈ X },

and conversely given a partition of X there is an equivalence relation ∼ on X defined by

x ∼ y if and only if x, y ∈ S for some S ∈P , and moreover ∼ is such that P = {E(x) : x ∈ X }.

If Â is a weak order on X then ∼ as defined in equation (5) is an equivalence relation.

Given a weak order Â we define a binary relation Â′ on X/∼, for all a,b ∈ X/∼ by a Â′ b if and

only if x Â y for some x ∈ a, y ∈ b. We call Â′ the induced order on X/∼. Clearly, Â′ is well

defined. The following basic result is stated without proof (for a proof see Fishburn (1970a,

p. 13, Theorem 2.1))

Lemma A.1. Let Â be a weak order on a set X and let ∼ be the corresponding equivalence

relation, then the induced order Â′ on X/∼ is a linear order.

Remark: What we call a linear order, Fishburn (1970a) calls a strict order.

B Appendix: Characterizations of special cases

We will spend this section on characterizing special cases: standard lexicographic prefer-

ences and simple majority preferences. We use three additional axioms in our characteri-

zations of lexicographic and simple majority preferences. A permutation π : I → I is a bi-

jective function. Given a permutation π : I → I and x ∈×i∈I Xi , where Xi = X j for all i , j ∈ I ,

let πx denote the element obtained after permuting the coordinates of x using π, that is

πx := (xπ(1), ...., xπ(n)). In the statement of axiom A6 we assume that Xi = X j for all i , j ∈ I

since otherwise we may have πx ∉ X .

A5 Weak anonymity: for each i ∈ I , let ai ,bi ∈ Xi be such that ai Âi bi and let b = (bi )i∈I .

Then for all i , j ∈ I : (ai ,b−i ) ∼ (a j ,b− j ).

A6 Anonymity: for every permutation π : I → I and for all x, y ∈ X , it holds that x Â y if

and only if πx Âπy .

A7 Weak decisiveness: for all x, y ∈ X , if xi Âi yi and y j Â j x j for some distinct i , j ∈ I ,

then x Â y or y Â x.

6Relation ∼ is reflexive if for all x ∈ X : x ∼ x. Relation ∼ is symmetric if for all x, y ∈ X : x ∼ y implies y ∼ x.
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Anonymity is commonly assumed in axiomatizations of majority rules in social choice

theory (see for instance May (1952)). In order for anonymity to make sense in our setting,

we have to impose the condition that coordinate sets are equal (Xi = X j for all i , j ∈ I ).

We also need to assume that all coordinate relations are equal (Âi=Â j for all i , j ∈ I ) since

otherwise there are LM relations that fail to satisfy anonymity:

Example B.1. Take X = {a,b,c,d}× {a,b,c,d}. Define asymmetric relations Â1 and Â2 on

{a,b,c,d} such that a Â1 b and c Â1 d , and a Â2 b and d Â2 c. Let Â be a simple majority

relation on X with coordinate relations Â1 and Â2. Then (a,c) ∼ (b,d) and (c, a) Â (d ,b). But

if (c, a) Â (d ,b) then anonymity requires that (a,c) Â (b,d). A contradiction. /

Weak decisiveness is a weak version of decisiveness in Fishburn (1976). Weak decisive-

ness is introduced in Petri and Voorneveld (2016) where it is used in a characterization of

lexicographic preferences.

The corollary below implies that a lexicographic majority relation Â is lexicographic if

and only if Â is decisive (satisfies A7).

Corollary B.1. Let Â be an asymmetric binary relation on X = ×i∈I Xi . Then Â is lexico-

graphic if and only if it satisfies noncompensation A1, weak decisiveness A7, restricted nega-

tive transitivity A2, and majority robustness A3.

Proof. If Â is decisive then each equivalence class of ∼0, in the proof of theorem 4.1, is

singleton. By theorem 4.1 it follows that Â is lexicographic. The converse is immediate.

Part a) of the next corollary implies that a lexicographic majority relation Â is simple

majority if and only if Â satisfies weak anonymity A5. By adding the hypothesis that all

coordinate sets and all coordinate relations are equal part b) of corollary B.2 gives a charac-

terization of simple majority in terms of a standard anonymity axiom.

Corollary B.2. Let Â be an asymmetric binary relation on X =×i∈I Xi :

a) Then Â is simple majority if and only if it satisfies noncompensation A1, restricted neg-

ative transitivity A2, and weak anonymity A5.

b) If in addition Xi = X j and Âi=Â j for all i , j ∈ I , then Â is simple majority if and only

if it satisfies noncompensation A1, restricted negative transitivity A2, and anonymity

A6.

Proof. By assumption each set Xi contains two elements xi , yi ∈ Xi such that xi Âi yi for all

i ∈ I . Hence we may define a subset X ′ of X such that X ′ = ×i∈I {xi , yi } and xi Âi yi for all

i ∈ I . For each i ∈ I , define an element ei ∈ X ′ by (ei )i = xi and (ei ) j = y j if j ∈ I \{i }.
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(Part a)) Weak anonymity says that ei ∼ e j for all i , j ∈ I . By inspecting the proof of

theorem 4.1, we see that ∼0 has only one equivalence class, and following step 1 in the

proof of theorem 4.1 shows that Â is simple majority. The converse follows by the necessity

part of theorem 4.1 and by noting that Â satisfies weak anonymity A5.

(Part b)) It suffices to show that ei ∼ e j for all i , j ∈ I , since the result then follows by part

a) above. Let i , j ∈ I and assume that ei Â e j . Anonymity A6 implies that πei Â πe j for all

permutations π. Let π : I → I be a transposition such that π(i ) = j ,π( j ) = i and π(k) = k

for all k ∈ I \{i , j }. Then e j = πei Â πe j = ei . A contradiction to ei Â e j and asymmetry of Â.

Thus ei ∼ e j for all i , j ∈ I .

In corollary B.2 majority robustness is not needed to characterize simple majority rules.

The axioms in theorem 4.1 are necessary, but not sufficient, for a preference relation to

be simple majority. None of the axioms used in the characterization precludes ei Â e j or

e j Â ei for some i , j ∈ I , which is why we need (weak) anonymity in corollary B.2. This

is contrary to lexicographic preferences that are such that ei Â e j or e j Â ei for all i , j ∈ I .

Therefore decisiveness A7 is assumed in corollary B.1. In a characterization of lexicographic

preferences robustness is needed: it is logically independent of the other axioms.

It is straightforward to verify that part a) and part b) of majority robustness follows from

Pareto lemma D.1 whenever X = X1×X2. Also there are only two choices for the indifference

partition in theorem 4.1: either P = {{1,2}} or P = {{1}, {2}}. We have the following corollary:

Corollary B.3. Let Â be an asymmetric binary relation on X = X1 × X2. Relation Â is either

lexicographic or simple majority if and only if Â satisfies noncompensation A1 and restricted

negative transitivity A2.

C Appendix: Proofs

C.1 Proof of lemma 3.1

Proof. Asymmetry of Â implies x ∼ x for all x ∈ X . If Â is lexicographic majority then by

asymmetry of Âi for all i ∈ I it follows that xi ∼i xi for all i ∈ I and xi ∈ Xi .

⇒: Let i ∈ I , xi , yi ∈ Xi have xi Âi yi . Let z−i ∈ X−i . Since xi Âi yi and z j ∼ j z j for

all j 6= i , we have |R((xi , z−i ), (yi , z−i ))| = 1 > 0 = |R((yi , z−i ), (xi , z−i ))|, where R ∈ P is the

unique R such that i ∈ R. Since |S((xi , z−i ), (yi , z−i ))| = 0 = |S((yi , z−i ), (xi , z−i ))| for all S ∈P

with S 6= R, lexicographic majority preference gives (xi , z−i ) Â (yi , z−i ).

⇐: Let i ∈ I , xi , yi ∈ Xi , and z−i ∈ X−i with (xi , z−i ) Â (yi , z−i ). Since z j ∼ j z j for all

j 6= i , lexicographic majority preferences must come from a difference in coordinate i : xi Âi

yi .
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C.2 Proof of proposition 6.1

Proof. Let Â be LM with partition P and linear order <1 on P . Since P is a finite set and

<1 is a linear order we may without loss of generality assume that P = {P1, ...,Pk } for some

k ∈N and such that Pi <1 P j if and only if i < j . Now for every i ∈ {1, ...,k} set Ni :=⋃i
l=1 Pl .

Let N := {Ni : i ∈ {1, ...,k}}. Then clearly N is a nested sequence: if M , N ∈N , then M = Ni

and N = N j for some i , j ∈ {1, ...,k}. If j < i then N j =⋃ j
l=1 Pl ⊂⋃i

l=1 Pl = Ni , and similarly if

i < j then Ni ⊂ N j . Also I =⋃k
l=1 Pl = Nk ∈N .

Assume x Â y , then there is an i ∈ {1, ...,k} such that |Pi (x, y)| > |Pi (y, x)| and |P j (x, y)| =
|P j (y, x)| for all j < i . By definition of N this implies that |Ni (x, y)|−|Ni (y, x)| =∑

j≤i
(|P j (x, y)|−

|P j (y, x)|)= |Pi (x, y)|−|Pi (y, x)| > 0. If M ⊂ N then M = N j for some j < i , and a similar cal-

culation then shows that |M(x, y)|− |M(y, x)| = 0.

If x ∼ y then |Pi (x, y)| = |Pi (y, x)| for all i ∈ {1, ...,k} and hence |Ni (x, y)| = |Ni (y, x)| for

all i ∈ {1, ...,k}.

Conversely let N be a nested sequence. Then w.l.o.g. there is a k ∈ N such that N =
{N1, ..., Nk } and such that for all i , j ∈ {1, ...,k}: Ni ⊂ N j if and only if i < j . Let P1 := N1 and

for all i ∈ {2, ...,k} let Pi := Ni \Ni−1. Then P := {Pi : i ∈ {1, ...,k}} is a partition of I . Define <1

on P by Pi <1 P j if and only if i < j .

If x Â y then there is an i ∈ {1, ...,k} such that |Ni (x, y)| > |Ni (y, x)| and |N j (x, y)| =
|N j (y, x)| for all j < i . By definition of Pi it follows that |Ni (x, y)| = |Pi (x, y)|+|Ni−1(x, y)| and

hence |Pi (x, y)| = |Ni (x, y)|− |Ni−1(x, y)| > |Ni (y, x)|− |Ni−1(x, y)| = |Ni (y, x)|− |Ni−1(y, x)| =
|Pi (y, x)|. Similarly it follows that |P j (x, y)| = |P j (y, x)| for all j < i (and hence P j <1 Pi ). If

x ∼ y then |Ni (x, y)| = |Ni (y, x)| for all i ∈ {1, ...,k}. Hence |Pi (x, y)| = |Ni (x, y)|−|Ni−1(x, y)| =
|Ni (y, x)|− |Ni−1(y, x)| = |Pi (y, x)| for all i ∈ {1, ...,k}.

C.3 Proof of lemma 7.1

Proof. Let Â be a lexicographic majority rule with partition P . Choose positive weights

(wi )i∈I such that wi = w j whenever i , j ∈ S for some S ∈ P , and such that the inequalities

in equation (4) are satisfied. Note that this is possible: Let R be the largest R ∈ P with

respect to <1. Let c > 0 and set wi = c for all i ∈ R. If P = {R} we are done. Otherwise, let

R ′ be the largest element in P \{R} according to <1. Choose c ′ > c|R| > 0 and set wi = c ′ for

all i ∈ R ′. If {R,R ′} = P we are done. Otherwise continue as above. By finiteness of P the

process must eventually stop.

To prove (3) it suffices to show that for all x, y ∈ X :x Â y =⇒ ∑
i∈P(x,y) wi >∑

i∈P(y,x) wi ,

x ∼ y =⇒ ∑
i∈P(x,y) wi =∑

i∈P(y,x) wi .
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Let x, y ∈ X such that x Â y , then there is an R ∈ P such that |R(x, y)| > |R(y, x)| and

|S(x, y)| = |S(y, x)| for all S <1 R. Note that S ∩P(x, y) = S(x, y) for all S ∈P . We have:

∑
i∈P(x,y)

wi −
∑

i∈P(y,x)
wi =

∑
S∈P

( ∑
i∈(P(x,y)∩S)

wi −
∑

i∈(P(y,x)∩S)
wi

)
(6)

= ∑
i∈R(x,y)\R(y,x)

wi +
∑

R<1S

( ∑
i∈S(x,y)

wi −
∑

i∈S(y,x)
wi

)
(7)

≥ ∑
R<1S

∑
i∈S(x,y)

wi +
(
wi −

∑
R<1S

∑
i∈S(y,x)

wi
)

(8)

> ∑
R<1S

∑
i∈S(x,y)

wi +0 ≥ 0. (9)

The equality in (7) follows since |S(x, y)| = |S(y, x)| for S ∈ P such that S <1 R and since

wi = w j whenever i , j ∈ S for some S ∈ P . The inequality in (8) follows by rearranging

terms and since i ∈ R and wi > 0 for all i ∈ I . The first inequality in (9) follows since the

weights were chosen to satisfy (4). The last inequality in (9) follows since wi > 0 for all i ∈ I .

Let x, y ∈ X such that x ∼ y . Then since preferences are lexicographic majority: |S(x, y)| =
|S(y, x)| for all S ∈P . It follows that

∑
i∈P(x,y)

wi =
∑

S∈P

∑
i∈S(x,y)

wi =
∑

S∈P

∑
i∈S(y,x)

wi =
∑

i∈P(y,x)
wi . (10)

By previous paragraphs it hence follows that x Â y if and only if
∑

i∈P(x,y) wi > ∑
i∈P(y,x) wi

for all x, y ∈ X . Thus preferences are weighted majority.

For the other direction assume that Â is a weighted majority rule such that the inequali-

ties in (4) hold for some partition P and linear order<1. LetÂ′ be the lexicographic majority

relation with partition P and linear order <1. It suffices to show that for all x, y ∈ X :x Â′ y =⇒ x Â y

x ∼′ y =⇒ x ∼ y

Let x, y ∈ X and x Â′ y , then |R(x, y)| > |R(y, x)| for some R ∈P and |S(y, x)| > |S(x, y)| for no

S <1 R. Pick the smallest R ∈ P , according to <1, such that |R(x, y)| > |R(y, x)|. Repeating

the computations in equation (6)-(9) shows that
∑

i∈P(x,y) wi >∑
i∈P(y,x) wi . Hence x Â y .

Finally, let x, y ∈ X be such that x ∼′ y then |S(x, y)| = |S(y, x)| for all S ∈P . The calcula-

tions in equation (10) imply
∑

i∈P(x,y) wi =∑
i∈P(y,x) wi , so x ∼ y .
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C.4 Proof of necessity of axioms in theorem 4.1

Proof. Let Â be a lexicographic majority preference with partition P and linear order <1

on P . We show that Â satisfies noncompensation A1, restricted negative transitivity A2,

majority robustness A3 part a) and majority robustness A3 part b).

Majority robustness: (Part a)) Let x, y ∈ X be such that x Â y and |P(x, y)| > |P(y, x)|. Then we

cannot have |S(x, y)| ≤ |S(y, x)| for all S ∈P , as this would imply that |P(x, y)| =∑
S∈P |S(x, y)| ≤∑

S∈P |S(y, x)| = |P(y, x)|. Hence |R(x, y)| > |R(y, x)| for some R ∈ P . Pick the smallest such

R ∈P with respect to <1 (and note that we cannot have |S(y, x)| > |S(x, y)| for some S <1 R

as that would imply that y Â x). If |R(x, y)| > 1+ |R(y, x)| then there is an i ∈ R such that

(x−i , zi )% (y−i , zi ) for all zi ∈ Xi , and we are done. Hence w.l.o.g. |R(x, y)| = 1+|R(y, x)|.
Assume there is an S ∈ P such that R <1 S and |S(x, y)| > 0, then there is an i ∈ S, such

that (x−i , zi ) % (y−i , zi ) for all zi ∈ Xi , and we are done again. Thus we may w.l.o.g. assume

that |S(x, y)| = 0 for all S ∈ P with R <1 S. Assume that |S(y, x)| > 0 for some R <1 S, then

since further |S(x, y)| = |S(y, x)| for all S <1 R, we have

|P(x, y)| = ∑
S∈P

|S(x, y)| =

∑
S<1R

|S(x, y)|+ ∑
R<1S

|S(x, y)|+ |R(x, y)| =

∑
S<1R

|S(y, x)|+ |R(y, x)|+1 ≤ ∑
S∈P

|S(y, x)| = |P(y, x)|,

which is a contradiction. Hence we may further reduce to the case where |S(y, x)| = 0 for all

S ∈ P with R <1 S, |S(x, y)| = |S(y, x)| for all S ∈ P with S <1 R and |R(x, y)| = 1+ |R(y, x)|.
But in such a case, for i ∈ R(x, y) we have (zi , x−i ) ∼ (zi , y−i ) for all zi ∈ Xi and we are done.

(Part b)) Let x, y ∈ X have |P(x, y)| > |P(y, x)| and x ∼ y . Then |R(x, y)| 6= |R(y, x)| for

some R ∈P . Looking at the first such R according to the linear order <1, we see that x Â y

if |R(x, y)| > |R(y, x)| and y Â x otherwise.

Restricted negative transitivity: Fix a binary product set X ′ =×i∈I {ai ,bi } ⊂ X where ai Âi bi

for all i ∈ I . Let x, y, w ∈ X ′ and x Â y . Since x Â y , there is an R ∈ P such that |R(x, y)| >
|R(y, x)| and |S(x, y)| = |S(y, x)| for all S ∈ P with S <1 R. Assume that w % x. If w ∼ x,

then |S(x, w)| = |S(w, x)| for all S ∈ P . Now note that for all S ∈ P and x, y ∈ X ′ we have

|S(x, y)| > |S(y, x)| if and only if |{i ∈ S : xi = ai }| > |{i ∈ S : yi = ai }|. Thus |S(x, y)| = |S(y, x)|
together with |S(x, w)| = |S(w, x)|, implies that |{i ∈ S : yi = ai }| = |{i ∈ S : xi = ai }| = |{i ∈
S : wi = ai }|, and hence |S(y, w)| = |S(w, y)| for all S <1 R. Since |R(x, y)| > |R(y, x)| and
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|R(x, w)| = |R(w, x)|, implies that |{i ∈ S : wi = ai }| = |{i ∈ S : xi = ai }| > |{i ∈ S : yi = ai }| we

have |R(w, y)| > |R(y, w)| and by definition of Â (as a LM preference) it follows that w Â y .

Suppose instead that w Â x, then similar calculations show that w Â y . This shows that Â is

negatively transitive.

Noncompensation: Let x, y, z, w ∈ X be such that P(x, y) = P(w, z) and P(y, x) = P(z, w), then

S(x, y) = S(w, z) and S(y, x) = S(z, w) for all S ∈P , and by definition of lexicographic major-

ity it is clear that x Â y if and only if w Â z.

D Appendix: Pareto lemma

Here we state a lemma used in our characterization result 4.1. The lemma is from Petri

and Voorneveld (2016), where a proof can also be found. Basically the lemma says that

any relation Â satisfying A2 and A1 extends the Pareto relation, i.e. it ranks every pair of

elements x, y ∈ X that the Pareto relation on X ranks. Note that only transitivity of Â is used

in the proof of (b), hence negative transitivity A2 is stronger than necessary to prove (b).

Lemma D.1 (Pareto). Let Â be an asymmetric relation on X =×i∈I Xi .

(a) Let Â satisfy noncompensation A1. For all x, y ∈ X , if xi ∼i yi for all i ∈ I : x ∼ y.

(b) Let Â satisfy transitivity requirement A2 on X ′ =×i∈I {ai ,bi } ⊂ X . For all x, y ∈ X ′ with

xi %i yi for all i ∈ I and xi Âi yi for some i ∈ I : x Â y.

E Appendix: Logical independence

We prove that the axioms used in theorem 4.1 are logically independent. This is proven by

four examples, were each example violates exactly one of the axioms.

Proposition E.1. Axioms A1, A2, A3 part a) and A3 part b) are logically independent.

The first three examples below are taken from Petri and Voorneveld (2016) and adapted

to show independence in the current setting. Example E.4 is introduced to show indepen-

dence of axiom A3 part b).

Example E.1 (A1 violated). The linear order Â on X = {0,2}× {0,1,4} represented by utility

function u : X →Rwith u(x) = x1 +x2 has

(2,4) Â (0,4) Â (2,1) Â (2,0) Â (0,1) Â (0,0).
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(0,0)

(1,0) (0,1)

(1,1)

Figure 3: Violation of A2.

So Â is asymmetric. The utility function is increasing in each coordinate, so Â1 and Â2

coincide with the usual order > on integers.

Since Â is negatively transitive, A2 holds. A3 part a) holds: If P(y, x) 6= ; then it imposes

restrictions only on pair vectors x, y ∈ X with
∣∣P(x, y)∪P(y, x)

∣∣= 3, but |I | = 2. If P(y, x) =;
then robustness holds if the conclusions of part a) and part b) of the Pareto lemma hold. But

Â is represented by an additive utility function u : X → R and hence Â extends the Pareto

order.

A3 part b) holds: There are no indifferences.

A1 is violated: let x = w = (2,0), y = (0,1), z = (0,4). Then P(x, y) = P(w, z) = {1},P(y, x) =
P(z, w) = {2}, but x Â y and z Â w . /

Example E.2 (A2 violated). Define a relation Â on X =×2
i=1{0,1} by x Â y if and only if there

is a directed edge from y to x in Figure 3. So Â is asymmetric. Moreover, 1 Â1 0, since there

is an edge from (0,0) to (1,0) and from (0,1) to (1,1). Similarly, 1 Â2 0, since there is an edge

from (0,0) to (0,1) and from (1,0) to (1,1).

A1 holds: X has only two factors Xi = {0,1} and 1 Âi 0 for both i = 1,2.

A3 part a) holds: Since |I | ≤ 2 it follows that part a) of majority robustness holds if and

only if it holds for all vectors x, y ∈ X with P(y, x) =;. This is easily seen to be the case.

A3 part b) holds: There are no indifferences.

A2 is violated: (1,1) Â (1,0) and (1,0) Â (0,0), but not (1,1) Â (0,0). /

Example E.3 (A3 part a) violated). The linear order Â on X =×3
i=1{0,1} represented by utility

function u : X →Rwith u(x) = 2x1 +3x2 +4x3 has

(1,1,1) Â (0,1,1) Â (1,0,1) Â (1,1,0) Â (0,0,1) Â (0,1,0) Â
(1,0,0) Â (0,0,0).

So Â is asymmetric. The utility function is increasing in each coordinate, so 1 Âi 0 for all
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i ∈ {1,2,3}. Let w = (2,3,4) ∈R3. Since xi , yi ∈ {0,1} for all i = 1,2,3, we can rewrite

x Â y ⇔
3∑

i=1
wi (xi − yi ) > 0 ⇔ ∑

i∈P(x,y)
wi >

∑
i∈P(y,x)

wi .

So A1 holds. A2 holds: Â is negatively transitive.

A3 part b) holds: There are no indifferences.

A3 part a) is violated: (1,1,0) Â (0,0,1), so A3 implies that (0,1,0)% (0,0,1) (if coordinate

i = 1 is changed) or (1,0,0) % (0,0,1) (if coordinate i = 2 is changed). A contradiction in

both cases. /

Example E.4 (A3 part b) violated). The linear orderÂ on X =×3
i=1{0,1} represented by utility

function u : X →Rwith u(x) = 2x1 +3x2 +5x3 has

(1,1,1) Â (0,1,1) Â (1,0,1) Â (1,1,0) ∼ (0,0,1) Â (0,1,0) Â
(1,0,0) Â (0,0,0).

So Â is asymmetric. The utility function is increasing in each coordinate, so 1 Âi 0 for all

i ∈ {1,2,3}. Let w = (2,3,5) ∈R3. Since xi , yi ∈ {0,1} for all i = 1,2,3, we can rewrite

x Â y ⇔
3∑

i=1
wi (xi − yi ) > 0 ⇔ ∑

i∈P(x,y)
wi >

∑
i∈P(y,x)

wi .

So A1 holds. A2 holds: Â is negatively transitive.

A3 part a) holds. If x, y ∈ X satisfies the premise of A3 part a), then either x = (0,1,1) and

y = (1,0,0) or x = (1,0,1) and y = (0,1,0), and the conclusion of A3 part a) is easily verified

to hold in both cases.

part a)

A3 part b) is violated: (1,1,0) ∼ (0,0,1) and A3 part b) implies that (1,0,0) ∼ (0,0,1) or

(0,1,0) ∼ (0,0,1), a contradiction.

/
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