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1 Introduction

Samuelson [35], Arrow [8], and their successors explored the behavioral consequences of

preference-based choice, showing how unobserved tastes could be recovered from observed

actions. While this research program succeeded in establishing more solid foundations for

traditional models of utility maximization, it did not capture two fundamental aspects of

real-world decision making that later researchers have tried to incorporate: Firstly, data

available in practice often record the aggregate behavior of a population of agents with

heterogeneous tastes. Secondly, choices may be influenced by a variety of cognitive factors

other than binary preference comparisons. Individually and in combination, these issues

complicate the task of using data to uncover the unobserved components of a model, thus

posing a challenge to the elaboration of the revealed preference program.

In response to the first issue, a strand of research originating with Luce [27] and Block

and Marschak [10] focuses on the rationalization of stochastic choice data, interpreted as

the aggregate behavior of a population of heterogeneous individuals. This work has led to

a highly productive interplay with econometrics, as well as to the development of discrete

choice models that have become essential tools in labor economics, industrial organization,

and other fields.1 However, allowing heterogeneous tastes raises immediate difficulties for

identification: The random utility model (RUM), which incorporates heterogeneity in the

natural way by positing a probability distribution over utility functions, is known to have

poor identification properties. Fishburn [18] has demonstrated that it is even possible for

stochastic choices from all possible menus to be generated by two distinct RUMs with

disjoint support.2 These observations have led to the study of restrictions on the random

utility framework that improve identification, such as those captured in the logit model

of Luce [27] and McFadden [31], or the single-crossing RUM of Apesteguia et al. [7].

1Recent theoretical contributions that advance this agenda include Apesteguia et al. [6] and Kovach
and Tserenjigmid [22].

2In Fishburn’s example, one RUM assigns equal probability to w � x � y � z and x � w � z � y,
while another assigns equal probability to w � x � z � y and x � w � y � z. These models yield the
same stochastic choices over any subset of the four alternatives. (See also Turansick [39].)
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Turning to the second issue mentioned above, it has long been acknowledged that

preferences are not the sole determinant of choice behavior. The agent’s working memory,

cognitive load, mood or affect, framing of the situation, ingrained biases and heuristics,

level of attention, and general intelligence can all be shown to influence decision making in

ways that are difficult to reconcile with the preference maximization paradigm. Moreover,

there is no compelling reason to expect a population of agents to be more homogeneous

in respect of these cognitive traits and abilities than in respect of their tastes. Ideally,

we would like to allow heterogeneity on both dimensions—and even correlation between

them—while continuing to work with stochastic choice data. But many existing models

with elaborated cognition either inhabit a deterministic setting (e.g., Dutta and Horan [15]

and Lleras et al. [26]) or assume that tastes are uniform across the population (e.g., Aguiar

et al. [2] and Manzini and Mariotti [28]).

Of course, it is straightforward to build a model that allows “double heterogeneity”

of the desired sort. The difficulty here lies in constructing a framework that can combine

this flexibility with attractive identification properties, enabling us to distinguish prefer-

ences and cognition and to pin down the parameters of each component. Indeed, mixing

taste and cognitive heterogeneity tends to exacerbate the identification problems arising

from each dimension separately. For instance, models of these two components that are

identified in isolation may not be identified when they are merged.

For a concrete illustration of this point, consider the stochastic choice function (SCF) in

Table 1A.3 Although the random utility model in general is not identified, the choice data

shown here do have a unique RUM representation.4 Alternatively, fixing the preferences

x � y � z, we can explain the same data using a model of satisficing behavior from the

class defined below in Section 4.2. Here a threshold alternative x̃ is drawn from the menu

3In Table 1 and throughout, note the multiplicative notation for enumerated sets of alternatives. We
use this notation for menus to avoid a proliferation of {·} symbols, but not for other kinds of sets as this
could create ambiguity.

4The SCF in Table 1A admits the unique taste distribution Pr[x � y � z] = 0.2, Pr[x � z � y] = 0.3,
Pr[y � x � z] = 0.1, Pr[y � z � x] = 0.2, Pr[z � x � y] = 0.1, and Pr[z � y � x] = 0.1. Note that this
distribution satisfies Turansick’s [39] conditions for RUM identification.
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[A.] [B.]

A ρ(x,A) ρ(y, A) ρ(z, A) τA(x) τA(y) τA(z)
xy 0.6 0.4 0.0 0.2 0.8 —
xz 0.6 0.0 0.4 0.2 — 0.8
yz 0.0 0.5 0.5 — 0.0 1.0
xyz 0.5 0.3 0.2 0.2 0.2 0.6

Table 1: [A.] A stochastic choice function over the menus drawn from X = xyz. [B.] The
corresponding threshold distributions for a satisficing representation of the choice data.

A according to the distribution τA shown in Table 1B. The satisficing agent considers all

members of A that are weakly preferred to the threshold x̃ to be acceptable choices from

this menu, and selects one of them uniformly. For instance, we have

ρ(x, xyz) =

x̃=x︷ ︸︸ ︷
τxyz(x)

1
+

x̃=y︷ ︸︸ ︷
τxyz(y)

2
+

x̃=z︷ ︸︸ ︷
τxyz(z)

3
=

0.2

1
+

0.2

2
+

0.6

3
= 0.5, (1)

ρ(y, xyz) = 0.2/2 + 0.6/3 = 0.3, and ρ(z, xyz) = 0.6/3 = 0.2. Importantly, like the RUM

representation of the same data, the satisficing representation in Table 1B is unique.5

Now suppose that we combine this type of satisficing with preference heterogeneity,

assuming for purposes of this example that tastes and thresholds are drawn independently.

The parameters of the resulting model are no longer uniquely determined by the data in

Table 1A. On the one hand, we could have the taste distribution Pr[x � y � z] = 0.6 and

Pr[z � y � x] = 0.4, together with the threshold distributions

τxy(x) = 0.6, τxy(y) = 0.4; τxz(x) = 0.6, τxz(z) = 0.4; τyz(y) = 0.4, τyz(z) = 0.6;

τxyz(x) = 0.48, τxyz(y) = 0.44, τxyz(z) = 0.08. (2)

5Incidentally, the tastes x � y � z can be inferred from the data ρ(x, xyz) > ρ(y, xyz) > ρ(z, xyz),
and so need not be known in advance.
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On the other hand, we could have Pr[x � y � z] = 0.8 and Pr[z � y � x] = 0.2, with

τxy(x) = 0.4, τxy(y) = 0.6; τxz(x) = 0.4, τxz(z) = 0.6; τyz(y) = 0.2, τyz(z) = 0.8;

τxyz(x) = 0.3, τxyz(y) = 0.4, τxyz(z) = 0.3. (3)

Here taste heterogeneity disrupts identification of the satisficing model, and vice versa,

even though the SCF in question poses no difficulties for either model in isolation.

The above illustration shows that for models in which non-preference factors affect

behavior, stochastic choice functions do not provide rich enough data for identification

purposes under even the most basic forms of taste heterogeneity. To address this challenge,

we posit the availability of “mixture choice” data, which consist of the joint distribution

of choices of a population of agents from a finite collection of menus. For example, in an

experiment where subjects face multiple decision problems, the researcher will know not

only which option is selected from each menu separately—that is, the empirical stochastic

choice function—but also the proportion of subjects who make a given combination of

choices across all problems. On a larger scale, businesses such as supermarkets, credit card

issuers, and online retailers can track the choices of individuals over time as menus change

due to product availability and entry or exit from particular markets. Panel or focus group

data will also have the mixture choice form when the menus faced by members are reliably

recorded. Mixture choice data are thus in no way an exotic theoretical construct, and are

in fact increasingly prevalent in the information-oriented economy.

Formally, a mixture choice function (MCF) is defined as a probability distribution over

deterministic choice functions (i.e., maps from menus to choices), and can be interpreted

as returning the share of the population that chooses in a particular way across the entire

domain of problems in a dataset. As noted, an MCF contains richer information than the

corresponding SCF, since it records correlations among the choices from different menus.

We will find that knowledge of these cross-menu correlations is essential to achieve our
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goal of disentangling preferences from other factors influencing behavior.

In our framework, the mixture choice data are generated by a population of agents

possessing individual “types.” Mathematically, a type is simply the index for a particular

SCF, and so the observed choice probabilities can be described as an unobserved mixture

(over types) of unobserved type-conditional stochastic choices from each menu.6 An agent’s

type thus captures the menu-independent features of the choice procedure governing his or

her behavior, which may also be affected by menu-specific factors not encoded in the type.

Under one natural interpretation, a type is a preference order over the alternatives that is

common to all choice problems, but may be maximized imperfectly due to factors such as

framing, mood, or attention. These menu-specific factors are realized independently across

the menus in the dataset, while preferences are assumed to remain fixed. Alternatively,

in a procedural model of choice the type could represent the agent’s general intelligence,

presumed to be stable across problems, and the residual type-conditional variation could

capture the agent’s cognitive load when facing different menus. Our results do not depend

on any particular interpretation of types, leaving scope in applications for the modeler to

define them appropriately to context.

A mixture choice dataset is exactly identified (i.e., point identified) if it has a unique

decomposition into type-conditional SCFs. In this case the data will reveal each type’s

share of the population plus each type’s distribution of choices when any menu-specific

factors are realized. In Section 3, we offer a variety of results (Propositions 1–5) showing

that a unique decomposition is guaranteed generically, provided the menus in our dataset

are large and numerous enough relative to the number of types.7

The first message of these results is quantitative: As the size and number of the menus

in our mixture choice dataset increases, the number of types that can be identified grows

explosively. For instance, with choice data for all menus drawn from a set of five or more

6A more formal expression of the structure we impose on mixture choice data appears in Equation 4.
For a review of finite mixture models in econometrics, see Compiani and Kitamura [13]. For a prominent
example of their use in experiments, see Harrison and Rutström [19].

7These identification results rely on a powerful theorem from Allman et al. [4], adapted as Lemma 1.
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alternatives, the number of identifiable types exceeds the number of possible preference

orders by many orders of magnitude (Proposition 2). Enormous type spaces can also be

accommodated using menus of uniform size drawn from a modestly proportioned set of

alternatives (Proposition 3).

Our results may also be useful for experimental design. Suppose, for instance, that

we wish to use a choice experiment to determine the taste distribution in a population of

agents who are also influenced by non-preference factors. How many choice problems are

needed? How do menus of different sizes contribute to achieving identification? If adding

new menus or expanding existing menus is costly—perhaps due to subjects becoming

fatigued or their cognitive imperfections being exacerbated—what is the most efficient

way to construct the menus presented? Our findings are well suited to address questions

such as these.

After investigating sufficient conditions for identification in the general mixture choice

framework, we extend the analysis to two specialized settings in which types are preference

orders and the type-conditional variation results from some form of bounded rationality.

Here we describe models of random satisficing thresholds (Section 4.2) and of “quantal

Fechnerian” choice (Section 4.3), each involving cognitive parameters that control the

extent of departure from preference maximization. The objective is to elicit these “deep”

parameters using our knowledge of the type-conditional SCFs, and to ensure that generic

identification continues to hold in these specialized settings (Proposition 6). Notably, our

approach allows for correlation between preference and non-preference factors affecting

choice, as well as for menu-dependence of the deep parameters of a model.

We conclude this section with a brief survey of related work. Firstly, a small recent

literature has made important progress on the problem of achieving identification when

both preferences and cognitive characteristics are heterogeneous. In particular, Abaluck

and Adams [1], Aguiar et al. [3], Barseghyan et al. [9], and Sovinsky Goeree [36] examine

models in which—due to limited attention—the decision maker considers only a subset of
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the available alternatives. These contributions either obtain partial identification (i.e., set

identification) or gain the leverage needed for exact identification via agent covariates (e.g.,

demographics), alternative covariates (e.g., advertising levels), or experimental control of

cognition. On the other hand, Kashaev and Aguiar [21] avoid the use of covariates and

study SCFs generated by the random attention model of Cattaneo et al. [12]. They too

allow for heterogeneous preferences and derive partial identification results.

We aim to develop a methodology for exact identification that can be adapted to a

range of models of decision making, while at the same time requiring only choice data.

To achieve this, we posit a dataset richer than those used in the papers mentioned above.

Specifically, we introduce the concept of a mixture choice function, simultaneously with

and independently of the work of Filiz-Ozbay and Masatlioglu [17]. These authors study

the relationship of mixture choice functions to the corresponding SCFs, proving a number

of results about the representation of stochastic choice data using generalizations of the

single-crossing RUM of Apesteguia et al. [7]. In contrast, we focus on identification of the

structural parameters embedded in mixture choice data, which we take to be observable,

and in this sense the two papers can be seen as complementary.8

Finally, the present paper builds upon Dardanoni et al. [14], where techniques from

the statistical literature on tensor decompositions were used for identification purposes

in the context of a population of decision makers with limited “consideration capacity.”

This framework is both more specialized than that of Sections 2–3 below and distinct

from the models studied in Section 4. Moreover, our emphasis will be on menu variation,

departing from Dardanoni et al. [14] and returning the tensor decomposition approach to

the original proving ground of revealed preference theory.

8Another related contribution is that of Lin [25], who shows by example how observing the correlations
between choices can help to achieve identification in a random expected utility model.
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2 The general mixture choice model

Let X be a finite set of alternatives, with cardinality n ≥ 3. A menu A ⊆ X is any set of

alternatives with |A| ≥ 2; and A denotes a fixed collection of K ≥ 3 such menus, which we

will enumerate as 〈A1, . . . , AK〉 when convenient. We refer to the set {A ⊆ X : |A| ≥ 2}

as the full collection of menus.

A choice function is any rule c : A → X such that ∀A ∈ A we have c(A) ∈ A, and C

denotes the set of all choice functions. In this setting, a stochastic choice function (SCF)

is a ρ : X × A 7→ [0, 1] such that for each A ∈ A we have
∑

x∈A ρ(x,A) = 1. We study

the following more general notion of random choice, which permits statistical dependence

of choice behavior across menus.

Definition 1. A mixture choice function (MCF) is a probability distribution over C; i.e.,

a µ : C→ [0, 1] such that
∑

c∈C µ(c) = 1. The MCF µ is said to be menu independent if

∀c ∈ C we have µ(c) =
∏

A∈A
∑

c′∈C:c′(A)=c(A) µ(c′).

Menu independence eliminates interaction across choice problems, returning us to the

SCF framework. To see this, note that any SCF ρ induces the (“product”) MCF defined

by µρ(c) =
∏

A∈A ρ(c(A), A), and conversely any MCF µ can be used to construct the

(“marginal”) SCF ρµ(x,A) =
∑

c∈C:c(A)=x µ(c). The mapping ρ 7→ µρ is then a bijection

from the set of all stochastic choice functions onto the set of menu-independent mixture

choice functions, with inverse map µ 7→ ρµ.9

Our objective is to use mixture choice functions to achieve simultaneous identification

of preferential and cognitive factors affecting choice behavior, when agents are potentially

heterogeneous on both dimensions. Specifically, we imagine a population of decision mak-

ers with types drawn from a finite set Θ. On the one hand, the type θ may encode the

agent’s preferences—either a full preference order over X or the value of a (discretized)

9The equivalence between SCFs and menu-independent MCFs relies on the latter being defined over
the entire space C, and may not hold on smaller spaces such as the class of rational choice functions. For
an analysis of MCFs that possess structure of this sort, see Filiz-Ozbay and Masatlioglu [17].
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numerical preference parameter such as a discount factor or a coefficient of risk aversion.

On the other hand, the type could capture a cognitive trait such as a reference point or

level of attention to the choice environment.

The type distribution is denoted by 〈π(θ)〉θ∈Θ, and each type θ has a stochastic choice

function ρθ realized independently across the menus in the collection A. We assume that

the researcher observes the mixture choice function

µ(c) =
∑
θ∈Θ

π(θ)
∏
A∈A

ρθ(c(A), A). (4)

In other words, the likelihood of choice function c is the probability-weighted sum of the

likelihood that type θ chooses alternative c(A) independently from each menu A.

Observe that the determination of µ(c) via Equation 4 involves two nested levels of

stochasticity: We are uncertain about the pattern of choices that will arise both because

the type θ is random and because, conditional on type, the choice function ρθ is random.

For example, if types indicate the framing of the problem (Salant and Rubinstein [34]),

then choices are stochastic both because we have imperfect knowledge of the frame itself

and because other nondeterministic factors influence behavior, conditional on the frame.

These factors could include preferences as well as other cognitive variables such as the

decision maker’s level of attention (Masatlioglu et al. [30]), mood or other affective state

(Manzini and Mariotti [29]), or capacity to process information (Wilson [41]).10

Whatever the interpretation of θ, our primary assumption is that the agent’s choice

behavior is statistically independent across menus, conditional on type. Mathematically,

this requires that the type-specific MCFs be products over A of the marginal probabilities

ρθ(c(A), A); a property that is not in general inherited by the observed aggregate MCF.

10If each function ρθ were deterministic, then µ(c) would simply be the probability of the type θ (if any)
whose behavior conformed to c. Here µ would reveal the type distribution directly, and identification of
the model would not be an issue. In the example, each frame would yield a different pattern of choices for
fixed preferences, and hence the frame distribution could be inferred from µ in the absence of preference
variation. In contrast, Equation 4 allows frames and preferences to vary simultaneously, in a manner that
confounds their effects but nevertheless preserves the possibility of identification from the data in µ.
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[A.] θ ρθ(x, xy) ρθ(y, xy) ρθ(x, xz) ρθ(z, xz) ρθ(y, yz) ρθ(z, yz)
θ1 3/5 2/5 3/4 1/4 2/3 1/3
θ2 2/3 1/3 2/5 3/5 1/4 3/4

[B.] c(xy) = x c(xy) = x c(xy) = y c(xy) = y
c(yz) = y c(yz) = z c(yz) = y c(yz) = z

c(xz) = x 22/120 21/120 14/120 12/120
c(xz) = z 12/120 21/120 7/120 11/120

[C.] ρµ(x, xy) ρµ(y, xy) ρµ(x, xz) ρµ(z, xz) ρµ(y, yz) ρµ(z, yz)
76/120 44/120 69/120 51/120 55/120 65/120

Table 2: Example 1. [A.] Two type-conditional stochastic choice functions over the binary
menus drawn from X = xyz. [B.] The mixture choice function derived from these SCFs,
assumed to be equally likely, via Equation 4. [C.] The associated marginal SCF.

Example 1. Let A contain the binary menus drawn from X = xyz, and let Θ = {θ1, θ2}

with π(θ1) = π(θ2) = 1/2. Writing uθ for the utility function of type θ, assume that this

type chooses option w from menu ww′ with probability ρθ(w,ww′) = uθ(w)
uθ(w)+uθ(w′)

. Setting

uθ1(x) = uθ2(z) = 3, uθ1(y) = uθ2(x) = 2, and uθ1(z) = uθ2(y) = 1, we obtain the two

type-conditional SCFs displayed in Table 2A. Applying Equation 4 then yields the MCF

µ shown in Table 2B; where, for instance, the probability assigned to the choice function

〈c(xy), c(xz), c(yz)〉 = 〈x, x, y〉 is calculated as

π(θ1)ρθ1(x, xy)ρθ1(x, xz)ρθ1(y, yz) + π(θ2)ρθ2(x, xy)ρθ2(x, xz)ρθ2(y, yz)

= [1/2][3/5][3/4][2/3] + [1/2][2/3][2/5][1/4] = 22/120. (5)

The associated marginal SCF, shown in Table 2C, can also be computed as the pointwise

average of the two type-conditional SCFs.11 However, statistical information is lost when

we compress ρθ1 and ρθ2 into ρµ, since the aggregate MCF µ is not menu independent.12 ‖

The assumption of menu independence conditional on type formalizes the idea that

the residual variation captured by the function ρθ(·, A) is uncorrelated across A ∈ A. In

11Here, for example, we have ρµ(x, xy) = 22/120 + 21/120 + 12/120 + 21/120 = 76/120; which is the
average of ρθ1(x, xy) = 3/5 = 72/120 and ρθ2(x, xy) = 2/3 = 80/120.

12Indeed, µρµ assigns probability [76/120][69/120][55/120] 6= 22/120 to 〈c(xy), c(xz), c(yz)〉 = 〈x, x, y〉.
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Example 1, the probability that type θ1 maximizes uθ1 under all three menus is the product

ρθ1(x, xy)ρθ1(x, xz)ρθ1(y, yz) = [3/5][3/4][2/3] = 3/10 of the maximization probabilities

for the individual menus, with “success” in one problem having neither a beneficial nor

a detrimental impact on the others. Here we can imagine the agent’s level of attention

varying due to environmental factors—perhaps hot weather causes discomfort and lack of

focus—that are realized independently across menus, though not necessarily with identical

distributions. The menus could then represent options in distinct seasons of the year, with

systematically different but uncorrelated environmental patterns.

Before proceeding, we comment briefly on the relationship between individuals and

population shares in the context of mixture choice data. In our setting, an individual is

nothing more than a deterministic choice function c ∈ C that encodes his or her behavior

across all decision problems in the dataset. Counting the agents that behave in the same

way and dividing by the size of the population then yields the corresponding share µ(c),

and conversely multiplying µ(c) by the population size tells us how many agents behave

in the specified manner. We assume no other knowledge of any sort about individuals (in

particular, no access to demographics or other decision-maker covariates), and so these

two descriptions of the collective behavior are completely equivalent for a population of

known size.

In this connection, it is important to note that individuals do not coincide with types.

Indeed, in our framework multiple individuals will share the same θ, and types are assumed

to be unobservable. If types were observable, then we could pool the agents accordingly

to obtain the type distribution and type-conditional SCFs, and it would remain only to

determine any deep parameters embedded in each ρθ. In contrast, our task in this paper is

to use the mixture choice data in µ to identify all components of the model in Equation 4,

including both the explicit parameters 〈π(θ), ρθ〉θ∈Θ and the deep parameters arising from

more specialized assumptions about type-conditional choice behavior.
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3 Generic identification results: A tool kit

3.1 Sufficient conditions for identification

As noted, we are interested in the identification properties of the general mixture choice

model in Equation 4. In particular, our focus is on the number J = |Θ| of types that

the model allows, subject to its parameters being uniquely determined by the observable

data. For the moment we address this issue without imposing any additional structure

on the model; that is, without making any assumptions about the factors that influence

the functions ρθ. At present we are content to use our mixture choice data to identify

the distributions of types and type-conditional choices, while in Section 4 we will proceed

to examine more specialized models for which the identification of “deep” parameters

(embedded in ρθ) becomes possible. Thus we begin with a tool kit of relatively abstract

results, developed in Section 3.

Enumerating the types in Θ as 〈θ1, . . . , θJ〉, the parameters of the model in Equation 4

are Ω = 〈π(θj), ρ
θj〉Jj=1, where π(θj) is the probability of type θj and ρθj is the associated

SCF. The model is (strictly) identified if the mapping Ω 7→ µ is one-to-one, and generically

identified if this property holds except on a parameter set with Lebesgue measure zero.13

Observe that in Equation 4, the type θ is a dummy variable for the summation. This

implies that our enumeration 〈θ1, . . . , θJ〉 of the type space is arbitrary and cannot affect

the MCF generated by a given set of parameters—which is to say that any permutation

of the type labels leaves µ unchanged. However, as noted by Allman et al. [4, p. 3101],

“this does not prevent the statistician from inferring the parameters” of the model, and

“identification up to a permutation [of the labels] is largely enough for practical use, at

least in a maximum likelihood setting.” Our concept of identification must therefore be

understood as the map Ω 7→ µ being one-to-one up to reassignment of the type labels.

13That is, writing 4Z−1 for the unit simplex in <Z , the exceptional set must have measure zero relative

to the parameter space 4J−1 × [×Kk=14|Ak|−1]J ⊂ <J+J
∑K
k=1 |Ak|. (See Lewbel [24] and McManus [33]

for discussion of generic identification in econometrics.)
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To address the question of identification we shall use sufficient conditions from Allman

et al. [4, Theorem 4], based on a fundamental result by Kruskal [23, Theorem 4a]. These

conditions may be adapted for our purposes as follows.

Lemma 1 (Allman et al. [4]). Let {A1,A2,A3} be a partition of A with A1,A2,A3 6= ∅.

Writing κv =
∏

A∈Av |A|, the model is generically identified if

min{κ1, J}+ min{κ2, J}+ min{κ3, J} ≥ 2J + 2. (6)

The following example illustrates the use of mixture choice data to identify the type

probabilities and type-conditional SCFs.

Example 2. In the setting of Example 1, write p = π(θ1), aj = ρθj(x, xy), bj = ρθj(x, xz),

and dj = ρθj(y, yz). Denoting a given c by the vector 〈c(xy), c(xz), c(yz)〉, we then have

µ(x, x, y) = pa1b1d1 + [1− p]a2b2d2, (7)

µ(x, x, z) = pa1b1[1− d1] + [1− p]a2b2[1− d2], (8)

µ(x, z, y) = pa1[1− b1]d1 + [1− p]a2[1− b2]d2, (9)

...

µ(y, z, z) = p[1− a1][1− b1][1− d1] + [1− p][1− a2][1− b2][1− d2]. (10)

For the partition {A1,A2,A3} = {{xy}, {xz}, {yz}}, we find that Equation 6 holds since

2+2+2 ≥ 2×2+2. Accordingly, the multi-linear system in Equations 7–10 is generically

solvable for the seven parameters 〈p, a1, b1, d1, a2, b2, d2〉. For instance, substituting the

probabilities from Table 2B into the left-hand-sides of these equations, we obtain a system

with solution 〈p, a1, b1, d1, a2, b2, d2〉 = 〈1/2, 3/5, 3/4, 2/3, 2/3, 2/5, 1/4〉, unique up to label

reassignment.14 These are, of course, the parameter values from Table 2A. ‖
14The vector 〈p′, a′1, b′1, d′1, a′2, b′2, d′2〉 = 〈1/2, 2/3, 2/5, 1/4, 3/5, 3/4, 2/3〉 = 〈1−p, a2, b2, d2, a1, b1, d1〉 of

parameters arises from swapping the two type labels, and hence generates the same MCF.
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A second example (for which we are grateful to an anonymous referee) illustrates param-

eters in the zero-measure set on which identification fails.15

Example 3. Let A = {xyz, xy, yz} and Θ = {θ1, θ2}, and denote a given c by the vector

〈c(xyz), c(xy), c(yz)〉. Write p = π(θ1), aj = ρθj(x, xyz), bj = ρθj(y, xyz), dj = ρθj(x, xy),

and ej = ρθj(y, yz). The parameter vectors

〈p, a1, b1, d1, e1, a2, b2, d2, e2〉 = 〈3/5, 1/2, 1/2, 1, 1, 1, 0, 1, 7/10〉, (11)

〈p′, a′1, b′1, d′1, e′1, a′2, b′2, d′2, e′2〉 = 〈7/10, 1, 0, 1, 29/35, 0, 1, 1, 1〉; (12)

then both generate the MCF with µ(xxy) = 29/50, µ(xxz) = 6/50, µ(yxy) = 15/50. ‖

3.2 How many types can be identified?

We now use Lemma 1 to investigate the question of how many types could conceivably

be distinguished by mixture choice data from our collection A of menus. Denote by J(A)

the largest number of types for which the lemma guarantees identification. This value is

obtained by choosing the partition {A1,A2,A3} optimally, so as to maximize the largest

value of J that satisfies the inequality in Equation 6.

Throughout Section 3, we assume without loss of generality that |A1| ≥ · · · ≥ |AK |.

Clearly |A1| ≤ n and |AK | ≥ 2, but neither constraint necessarily holds with equality for

arbitrary A. In Equation 6, any partition that achieves J(A) will assign a menu with the

smallest available cardinality to its own element, which we express as A3 = {AK}. Hence

κ3 = |AK | ≥ 2, the desired inequality is implied by min{κ1, κ2} ≥ J , and we can write

J(A) = max
A1∪A2=A\A3

min{κ1, κ2} (13)

for the resulting upper bound.

15Indeed, this example can be shown to fail the rank condition in Kruskal [23, Theorem 4a]. Note that
the lack of identification here is not due to the zero probabilities in Equations 11–12. Similar examples
can be adduced in which the type-conditional SCFs return only strictly positive values.
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Ideally we would partition A\A3 so as to set κ1 = κ2, enabling the upper bound J(A)

in Equation 13 to attain its “theoretical optimum” value

J∗(A) =
[∏K−1

k=1 |Ak|
]1/2

. (14)

However, achieving this optimum requires finding a set Ξ ⊂ {1, . . . , K−1} of menu indices

such that
∏

k∈Ξ |Ak| = J∗(A), which may or may not be possible for any particular A.

Thus it remains challenging in general to determine the value of the bound J(A).16

3.3 All menus

As a benchmark, we first consider the prospects for identification in the ideal case where

our dataset includes the full collection of menus. For instance, when n = 4 we have that

K = 2n − n− 1 = 11 and the list of menu cardinalities is 〈4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2〉. Here

setting A1 = {A1, A2, A6, A7, A8} yields κ1 = 4 ·3 ·2 ·2 ·2 = 96 and κ2 = 3 ·3 ·3 ·2 ·2 = 108;

whereupon min{κ1, κ2} = 96 and it is easy to check that no higher value is achievable.

We record this conclusion as follows.

Proposition 1. If n = 4, A is the full collection of menus, and J ≤ 96, then the model

is generically identified.

In general there are
(
n
m

)
menus of each size m, with one binary menu allocated to A3,

and so the theoretical optimum J∗(A) satisfies

log J∗(A) =
1

2
log

[
1

2

n∏
m=2

m(nm)

]
=

1

2

[
log

1

2
+

n∑
m=2

(
n

m

)
logm

]
. (15)

When n ≥ 5, we can use an adaptive algorithm to identify a pair of sets A1 and A2 that

may not achieve the true J(A), but are certain to yield a value of min{κ1, κ2} that is at

16A closely related problem in computer science is that of separating a given multiset of numbers into
two subsets in such a way as to minimize the difference between the sums of the numbers in each subset.
This “partition problem” is known to be NP-hard.
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Figure 1: For 5 ≤ n ≤ 10, the bound
[
n−2
n−1

]1/2
J∗(A) from Proposition 2, the number 104n

of points on a cardinal preference grid with four significant figures, and the number n! of
ordinal preference rankings (on a logarithmic scale).

least the “near-optimum”
[
n−2
n−1

]1/2
J∗(A). The following result (proved in Appendix A.1)

establishes this claim.

Proposition 2. If n ≥ 5, A is the full collection of menus, and

log J ≤ 1

2
log

n− 2

n− 1
+ log J∗(A) =

1

2

[
log

n− 2

2[n− 1]
+

n∑
m=2

(
n

m

)
logm

]
, (16)

then the model is generically identified.

Proposition 2 establishes that models with a large number of types are in principle

identifiable given mixture choice data from all menus. For 5 ≤ n ≤ 10, Figure 1 plots the

bound on J supplied by Equation 16. Also shown are the number 104n of points on the

grid that results from each of n alternatives being assigned a cardinal utility value with

four significant figures, as well as the number n! of ordinal (strict) preference rankings of n

options. As the figure illustrates, by n = 7 the bound is several orders of magnitude above

the cardinality of either of these generously proportioned preference-type spaces, and by

n = 8 it is vastly higher. Thus the message of Proposition 2 is that with mixture choice

data from all menus over even a modest number of alternatives, (generic) identification is

unlikely to be an issue for the model in Equation 4. The more relevant question will be
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when theoretical identification can be ensured for rich type spaces despite limitations on

the available data.

As applied to choice experiments, Proposition 2 underscores the importance of taking

identification into account at the design stage. The menus from which subjects choose

must of course be selected in advance, but the grids used to approximate any continuous

parameters may sometimes be selected later, when estimation is performed.17 Our result

links these two features, informing us which menu collections are in principle adequate to

identify numerical parameters with specified precision.

3.4 Menus of uniform size

Next we consider restricted datasets containing at least Kq menus of uniform size q.

Since Kq − 1 of these menus are available to be divided between A1 and A2, we have

that κ1κ2 ≥ qKq−1 and min{κ1, κ2} ≥ qb[Kq−1]/2c (where b·c denotes the “floor” operator).

This yields sufficient conditions similar to those in the Allman et al. [4, pp. 3110–3111]

application of Lemma 1 to finite mixtures of finite measure products.

Proposition 3. For q ≤ n − 1, let A contain at least Kq ≤
(
n
q

)
menus of cardinality q.

Then the model is generically identified if log J ≤ b1
2
[Kq − 1]c log q.

Corollary 1. For q ≤ n− 1, let A contain all menus of cardinality q. Then the model is

generically identified if log J ≤ b1
2
[
(
n
q

)
− 1]c log q.

For instance, the case q = n− 1 corresponds to “leave-one-out” menu variation of the

sort used by Abaluck and Adams [1] to identify parameters in an econometric specification

of limited attention models. With Kq =
(
n
n−1

)
, so that all leave-one-out menus are in A,

the bound in Corollary 1 is b1
2
[n−1]c log[n−1]. Here mixture choice data will allow us to

identify 16 types with 5 options, 216 with 7 options, and 4096 with 9 options; indicating

the power of this sort of variation relative to the all-menus benchmark.

17We thank an anonymous referee for making this point.
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Figure 2: For 7 ≤ n ≤ 9 and q < n, the bound b1
2
[
(
n
q

)
− 1]c log q from Corollary 1.

On the other hand, for either theoretical or practical reasons a researcher may instead

wish to work with low-cardinality menus. This might be necessary, for example, if data

comes in the form of putative preference comparisons—equivalent to binary choices—or

if there is a desire to avoid context or choice-overload effects. Setting q = 2 and Kq =
(
n
2

)
,

we obtain the bound b1
4
[n− 2][n+ 1]c log 2; thus identifying 16 types with 5 options, 1024

with 7 options, and 131 072 with 9 options.

Observe that the set of all binary menus and the set of all leave-one-out menus both

use a total of n[n − 1] choice objects across all problems. More generally, the set of all

menus of a given size q ≤ n/2 and the set of all menus of size n− q + 1 both use a total

of q
(
n
q

)
choice objects across all problems. Indeed, each specific alternative appears the

same number of times in the two datasets, which are thus directly comparable in terms of

resource intensity. In all cases the dataset containing the smaller menus (of size q) allows

identification of more preference types than does the dataset containing the larger menus

(of size n− q + 1). This is illustrated in Figure 2, where for n between 7 and 9 and each

q ≤ n we plot (on a logarithmic scale) the bound on J from Corollary 1. For example,

when n = 9 the bound for size q = 4 exceeds that for size n− q + 1 = 6, when n = 8 the

bound for q = 3 exceeds that for n − q + 1 = 6, and so on. Intuitively, this is because a
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fixed budget B of choice objects is best spent “purchasing” a large number B/q of menus

with small size q in order to maximize the bound b1
2
[B
q
− 1]c log q in Proposition 3.18

As already noted, an important threshold for type identification is the number n! of

ordinal preference rankings. Given q, we can ask whether the set of all menus of this size

is adequate to attain the ranking threshold, and can answer in the affirmative if n is large

enough to satisfy the inequality log n! ≤ b1
2
[
(
n
q

)
− 1]c log q arising from Corollary 1. The

next result records our conclusions from this exercise.

Proposition 4. Suppose that J = n! and A consists of all menus of cardinality q. Then

the model is generically identified if and only if one of the following holds: (i) q = 2 and

n ≥ 10, (ii) q = 3 and n ≥ 6, or (iii) q ≥ 4 and n ≥ q + 2.

Identification of all ordinal preference types is achieved with the smallest number K = 15

of menus in the case of n = 6 and q = 4; and is achieved with the smallest budget B = 60

of choice objects in the case of n = 6 and 3 ≤ q ≤ 4. Of course, if we combine the menus

of two or more different cardinalities (e.g., q = 2 or 3; see Section 4.4), then identification

will be achieved all the more easily.

3.5 Arbitrary menus

With naturalistic datasets having no special structure, we can still obtain a useful bound

on the number of identifiable types, relative to the theoretical optimum J∗(A), as long as

the cardinalities of the menus in A do not decline too quickly.

Definition 2. The collection A is subquadratic if for k < K − 1 we have |Ak| ≤ |Ak+1|2.

Proposition 5. If A is subquadratic and log J ≤ 1
2

log 1
|AK−1|

+ log J∗(A), then the model

is generically identified.

18Ignoring both the floor operator and integer constraints, we have ∂
∂q [ 12 [Bq − 1] log q] = B[1−log q]

2q2 − 1
2q ,

which is strictly negative when log q > 1. As the budget B becomes large, the ideal menu size converges
to e ≈ 2.7 from below.
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This result shows, for instance, that if A is subquadratic and the two smallest menus in

the collection are binary, then we know that at least a fraction 2−1/2 ≈ 0.707 of J∗(A) is

attainable as a bound. (Proposition 5 is proved in Appendix A.1.)

4 Specialized models of choice

4.1 Deep parameters

The results in Section 3 ensure that the parameters Ω = 〈π(θj), ρ
θj〉Jj=1 of the model in

Equation 4 can be generically identified from mixture choice datasets. In more specialized

applications of this methodology, however, the ultimate objects of interest will often be

the “deep” parameters that impact decision making conditional on the agent’s type. Our

framework embeds these parameters in the functions ρθj , from which we must be able to

deduce them if the specialized model is to be identified.

In this section we interpret types as ordinal (strict) preference rankings, and for this

reason J = |Θ| = n! will hold throughout. Here we examine the issue of deep parameter

identification in relation to two specific models of cognitively constrained decision making;

namely, random satisficing thresholds and “quantal Fechnerian” choice. In the first model

the agent does not always aspire to perfect utility maximization, while in the second the

frequencies of choice errors depend on cardinal utility differences. Although many other

specialized models could be treated in the same way, we limit attention to these two for

the sake of brevity.19

As noted, demonstrating that a specialized model is identified will require exhibiting

a collection of menus sufficient not only to reveal the type-conditional SCFs, but also

to elicit the relevant deep parameters. Furthermore, we must establish that this can be

done generically, not in the space of all models consistent with Equation 4, but rather in

19Deep parameter identification would of course continue to be relevant outside the context of preference
order types and boundedly rational choice conditional on preferences. For instance, we could have a model
with types as frames and type-dependent risk tolerance parameters to be identified.
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the lower-dimensional space of models consistent with our assumptions about cognition.

Put differently, we must confirm that the specialized model does not itself fall into the

non-identifiable gaps allowed by Lemma 1.

In Sections 4.2–4.3 we briefly define the two specialized models under consideration.

Section 4.4 then proceeds to state a generic identification result for these models, showing

that both preferences and cognitive parameters are revealed by mixture choice data from

the collection of binary and ternary menus.

4.2 Random satisficing thresholds

As first conceived by Herbert Simon, a “satisficer” is an agent who chooses an alternative

that is not necessarily optimal, but exceeds some threshold level of utility that is deemed

acceptable. To capture this idea, let type θ have preference order �θ and write �θ for

its union with the equality relation. Each available x̃ may potentially be realized as the

threshold alternative for menu A, and this occurs with a probability τ θA (x̃) > 0 that in

general depends on both the menu and the agent’s type. Any options dispreferred to the

threshold will not be selected, and for simplicity we assume that all other alternatives are

equally likely to be the final choice. Denoting by rθA(x̃) =
∣∣{y ∈ A : y �θ x̃

}∣∣ the rank of

alternative x̃ on menu A according to the preference order �θ, this yields the conditional

SCF given by

ρθ (x,A) =
∑

x̃∈A:x�θx̃

τ θA (x̃)

rθA(x̃)
(17)

(cf. Dardanoni et al. [14, Appendix B, pp. 3–4]). Here the numerator of the summand is

the probability that a particular x̃ is the realized threshold, while the denominator is the

number of satisfactory alternatives (relative to the current threshold) between which this

probability is equitably shared.
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4.3 Quantal Fechnerian choice

LetA contain all possible binary menus. Strzalecki [37] defines a stochastic choice function

ρ to be Fechnerian if it admits a utility function u : X → < and a strictly increasing map

ϕ such that for all x, y ∈ X we have ρ(x, xy) = ϕ(u(x) − u(y)).20 That is to say, binary

choice probabilities are determined by utility differences.21

We will use an ordinal analog of the Fechnerian class of SCFs in which, for “decay”

parameter δθA ∈ (0, 1), the probability of alternative x being chosen from menu A is

ρθ (x,A) = [δθA]r
θ
A(x)−1 × 1− δθA

1− [δθA]|A|
. (18)

Hence ρθ (x,A) = [δθA]r
θ
A(x)−rθA(y)× ρθ (y, A), and the probability of an option being chosen

declines geometrically with its preference rank. Because of this dependence on ordinal

rather than cardinal preference information, and because of the resulting discreteness of

changes in choice probability, Equation 18 will be referred to as the “quantal” Fechnerian

model.

4.4 Identification of specialized models

Our aim is to provide sufficient conditions for generic identification of deep parameters

under either random satisficing thresholds (RST) or quantal Fechnerian choice (QFC). In

the RST context, this will mean two things: First, the parameters 〈�θ, 〈τ θA(x̃)〉x̃∈A∈A〉 of

Equation 17 must be revealed by the stochastic choice data in ρθ. Second, the parameters

Ω = 〈π(θj), ρ
θj〉Jj=1 of Equation 4 must be identified generically on the class of MCFs for

which each ρθ is consistent with the RST assumptions. Similarly, in the QFC context we

need that the parameters 〈�θ, 〈δθA〉A∈A〉 of Equation 18 are revealed by ρθ and that those

20Gustav Fechner [16], the originator of “psychophysics,” investigated the relationship between intensity
and perception of stimuli. Fechnerian models of choice were later studied by Thurstone [38].

21For instance, the standard multinomial logit model is Fechnerian, with ϕ(v) = [1 + exp[−v]]−1. This
property is also satisfied by a special case of the random threshold model, proposed by Tyson [40], with
ϕ(v) = 1− 1

2 exp[−v] for v ≥ 0 and ϕ(v) = 1
2 exp v for v < 0.
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of Equation 4 are identified generically on the corresponding class of MCFs.22

We address both the RST and QFC models in a single result, using a common menu

collection.23

Proposition 6. Let n ≥ 4, and let A contain all possible binary and ternary menus. In

the RST model, the type-conditional SCFs ρθ generically identify the preference orders �θ

and threshold probabilities τ θA(x̃). Likewise, in the QFC model the functions ρθ generically

identify the preference orders �θ and decay parameters δθA.

The proof of Proposition 6 (supplied in Appendix A.2) follows that of Lemma 1 by

Allman et al. [4], although the two results are formally independent. After showing that

the deep parameters of each model are revealed by the type-conditional SCFs, we proceed

to separate A into all menus of cardinality three (partition element A1), a single menu

of cardinality two (A3), and the remaining menus (A2). For each partition element Av

and for given threshold distributions over the menus therein, we then construct a matrix

Φv whose entries are mixture choice probabilities for the possible deterministic choice

functions over Av (rows of the matrix) and the possible preference types (columns of the

matrix) under the RST model. The desired identification will then hold if these matrices

generically have full “Kruskal rank”; or, equivalently, if they generically possess a nonzero

minor determinant of order J (the number of columns).24 For the RST model, the minor

determinants of the Φv matrices are polynomials in the threshold parameters. Using the

fact that a polynomial function on a Euclidean space is either identically zero or nonzero

22Recall that the parameter space of the general mixture choice model is 4J−1 × [×A∈A4|A|−1]J (see
fn. 13). The more specialized RST model can be viewed as an algebraic variety in this space, consisting

of those vectors 〈π(θj), ρ
θj 〉Jj=1 for which there exist deep parameters 〈τθjA (x̃)〉x̃∈A∈A that produce each

ρθj via Equation 17. This set is a proper subvariety that is spanned by the parameters τ
θj
A (x̃) of the

threshold distributions—together with the parameters π(θj) of the type distribution—and we wish to
establish that identification holds generically on this structured class of MCFs. (Similar statements hold

for the QFC model, the deep parameters 〈δθjA 〉A∈A, and Equation 18.)
23Proposition 6 achieves identification using a domain of small (binary and ternary) menus, but other

domains might be called for depending on the research question. For instance, a study of choice overload
(such as the famous jam-merchandising experiment by Iyengar and Lepper [20]) might require a domain
including both small and large menus, and Proposition 6 would need to be modified accordingly.

24The Kruskal rank of a matrix is the largest number ρ such that any ρ columns drawn from the matrix
are linearly independent. This value is clearly less than or equal to the (ordinary) rank of the matrix.
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almost everywhere, we can ensure generic identification by exhibiting specific parameters

that make a specific determinant (of order J) nonzero. Moreover, with slight modifications

this argument goes through for the QFC model as well.

It is worth emphasizing that Lemma 1 cannot be used directly to prove Proposition 6,

due to the reduction in free parameters and the special functional forms of the RST and

QFC models. While the broad proof strategy and the definition of the Φv matrices follow

Allman et al. [4], showing the (generic) full Kruskal rank property in the context of these

specialized models requires new arguments and constructions. In particular, our Lemma 2

(in Appendix A.2) plays the role of Allman et al.’s [4, p. 3119] Lemma 13, ensuring full

Kruskal rank by exhibiting the parameters and associated nonzero determinants called for

above. This argument can potentially be applied to other similar cases, and perhaps even

generalized to an overarching class of models for which our approach is valid—a research

program that goes beyond the scope of the present paper.

5 Conclusion

In this paper we use mixture choice functions to represent a rich form of data that can arise

in both experimental and non-experimental contexts. The essential feature of this data

is that it records the joint distribution of choices of a population of agents across a series

of decision problems, or “occasions” (see Dardanoni et al. [14, p. 1285]). A novelty of our

formulation is that we structure the occasions as distinct menus, comprising the domain

of a deterministic choice function, which leads to the MCF primitive in Definition 1.

Our formal results concern the identification properties of the model in Equation 4.

First, we explore the implications for our framework of the sufficient conditions supplied

by Allman et al. [4] (reproduced in Lemma 1 above), establishing in Propositions 1–5 that

various numbers and sizes of menus combine to ensure generic identification of both the

type distribution and the type-conditional SCFs. In Proposition 6 we then proceed to

show that this methodology can be adapted to deal with specialized, lower-dimensional
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models in which the type-conditional SCFs have particular functional forms and involve

deep parameters that must themselves be identified. (Identification having been verified,

Appendix A.3 sketches how structural parameters would be estimated from our mixture

choice dataset.)

We emphasize that the results in Sections 3 and 4 relate to Lemma 1 in different

ways. In Section 3 we are concerned with whether the menu collection is rich enough to

identify the parameters of our general framework, and here we can use Lemma 1 directly.

In Section 4, on the other hand, our goal is to adapt Allman et al.’s proof so that it can

be applied to the specialized models of interest. Both types of results will be needed if

we are to work with a variety of datasets and models, and hence these two parts of the

paper are complementary.

As noted, we conceive of the choice occasions as distinct menus of alternatives. Other

interpretations are possible, however, and will lead to datasets that can be analyzed

with similar methods. For example, we could interpret the occasions as repeated choices

from a menu that does not change in any consequential way, but whose framing (e.g.,

merchandising presentation or list order) varies over time. This would give the dataset a

behavioral flavor and offer the prospect of “market research” applications, such as using

retail scanner data to infer the characteristics of a population of consumers in terms of

both preferences and susceptibility to manipulation. Here covariates may be absent (e.g.,

due to privacy concerns) or unreliable (e.g., due to elicitation by survey), but the link

between choices on different occasions will often be observed directly.25 Studying such

variations on the MCF concept is left for future work.

25In relation to mixture choice data and privacy concerns, see for instance Anderson et al. [5, p. 421].
Describing the empirical basis for their study of repeated consumption in online settings, these authors
explain that a typical entry in one of their datasets consists of “a single user’s complete consumption
history in chronological order[.]” They go on to write that “[s]ince our focus is on aggregate behavior, no
user identities are present in our data, and precautions were taken so that they cannot be recovered[.]”
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A Appendix

A.1 Proofs of Propositions 2 and 5

In this section we prove Propositions 2 and 5, stated in Section 3.26 To do so, we employ a

“greedy” partition of A that sets A3 = {AK} and assigns the remaining menus to A1 and

A2 recursively, according to which of these partition elements has the smaller product-of-

cardinalities at the point of assignment. Recalling that |A1| ≥ · · · ≥ |AK |, this partition

can be defined formally as follows.

Definition 3. Let B1(1) = {A1} and B2(1) = ∅, and for 1 ≤ k ≤ K − 2 define the sets

B1(k + 1) =


B1(k) ∪ {Ak+1} if

∏
B1∈B1(k) |B1| ≤

∏
B2∈B2(k) |B2|,

B1(k) otherwise;

(19)

B2(k + 1) = {A1, . . . , Ak+1} \ B1(k + 1). (20)

The greedy partition of A then has A1 = B1(K − 1), A2 = B2(K − 1), and A3 = {AK}.

For 1 ≤ k ≤ K − 1, let b1(k) =
∏

B1∈B1(k) |B1| and b2(k) =
∏

B2∈B2(k) |B2|, and define

the product-of-cardinalities ratio

R(k) =
max {b1(k), b2(k)}
min {b1(k), b2(k)}

≥ 1. (21)

To prove Proposition 5, we demonstrate that min{κ1, κ2} ≥ |AK−1|−1/2 J∗(A) under the

greedy partition of A.

Proof of Proposition 5. We first show by induction that each R(k) ≤ |Ak|. Assuming that

this inequality holds for a particular k, consider the ratio R(k + 1). On the one hand, if

|Ak+1| ≥ R(k) then R(k + 1) = |Ak+1| /R(k) ≤ |Ak+1|, since R(k) ≥ 1 by construction.

26Since Proposition 5 imposes weaker assumptions on the menu collection A, we prove this result first.
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On the other hand, if |Ak+1| < R(k) ≤ |Ak| then

R(k + 1) =
R(k)

|Ak+1|
≤ |Ak|
|Ak+1|

≤ |Ak+1| , (22)

where the last inequality holds because A is subquadratic. To begin the inductive chain,

observe that R (1) = |A1| /1 = |A1|.

By induction we have R(K − 1) ≤ |AK−1|, and it follows that

|AK−1| ·min {b1(K − 1), b2(K − 1)} ≥ max {b1(K − 1), b2(K − 1)} , (23)

|AK−1| ·min {κ1, κ2} ≥ max {κ1, κ2} , (24)

|AK−1| · [min {κ1, κ2}] 2 ≥ κ1κ2 = [J∗(A)] 2, (25)

min {κ1, κ2} ≥ |AK−1|−1/2 J∗(A), (26)

as desired.

To establish Proposition 2, we start with the greedy partition and then judiciously

exchange menus between A1 and A2 to force their product-of-cardinalities ratio as close

as possible to unity.

Proof of Proposition 2. Observe first that under the greedy partition, A1 and A2 each

contain at least two menus with every cardinality from 2 to n− 1. This is because when

the cardinality decreases from |Ak| to |Ak+1| = |Ak| − 1 ≥ 2, at most two consecutive

menus can be allocated to the same partition element before the assignment process begins

to alternate between A1 and A2 (for the remainder of the block of menus with cardinality

|Ak+1|). Indeed, once the first two menus with cardinality |Ak+1| have been allocated to

the same partition element, we must have R(k) < |Ak+1|2; since otherwise

1 ≤ R(k + 2) =
R(k)

|Ak+1|2
≤ |Ak|
|Ak+1|2

=
|Ak+1|+ 1

|Ak+1|2
≤ 3

4
, (27)
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a contradiction. Noting that
(
n
m

)
≥ n ≥ 5 for 2 ≤ m ≤ n− 1, the observation follows.

Recall that the greedy partition has max{κ1, κ2}/min{κ1, κ2} ≤ 2, by Equation 24.

If also max{κ1, κ2}/min{κ1, κ2} > [n− 1]/[n− 2], then let m be the unique integer such

that both 3 ≤ m ≤ n− 1 and

m

m− 1
<

max{κ1, κ2}
min{κ1, κ2}

≤ m− 1

m− 2
. (28)

Now choose menus B1 ∈ A1 and B2 ∈ A2 such that |B1| = m and |B2| = m−1 if κ1 > κ2,

whereas |B1| = m−1 and |B2| = m if κ1 < κ2. Using the selected menus, we define a new

partition with elements A′1 = [A1 \ {B1}]∪{B2}, A′2 = [A2 \ {B2}]∪{B1}, and A′3 = A3.

If κ1 > κ2, then the new κ′1 and κ′2 satisfy

m− 1

m
<
κ′1
κ′2

=
κ1

κ2

[
m− 1

m

]2

≤ [m− 1]3

m2[m− 2]
<

m

m− 1
, (29)

where the equality holds by construction, the first and second inequalities follow from

Equation 28, and the third inequality holds since m ≥ 3. The case of κ1 < κ2 is analogous,

and in either eventuality we have that max{κ′1, κ′2}/min{κ′1, κ′2} < m/[m−1]. Once again,

if max{κ′1, κ′2}/min{κ′1, κ′2} > [n − 1]/[n − 2] then there is a new integer m′ such that

both m+ 1 ≤ m′ ≤ n− 1 and

m′

m′ − 1
<

max{κ′1, κ′2}
min{κ′1, κ′2}

≤ m′ − 1

m′ − 2
. (30)

Choosing menus B′1 ∈ A′1 and B′2 ∈ A′2 such that |B′1| = m′ and |B′2| = m′− 1 if κ′1 > κ′2,

whereas |B′1| = m′ − 1 and |B′2| = m′ if κ′1 < κ′2, we can proceed as before to construct a

third partition. Moreover, at most two menus with any particular cardinality need to be

found in A1 and A2 (for instance, if |B1| = m, m′ = m+ 1, and |B′1| = m′ − 1 = m).

Repeating the above procedure a finite number of (at most n− 3) times, we obtain a

partition with elements A′···′1 , A′···′2 , and A′···′3 ; and with corresponding κ′···′1 and κ′···′2 that

29



satisfy max{κ′···′1 , κ′···′2 }/min{κ′···′1 , κ′···′2 } ≤ [n− 1]/[n− 2]. We then have

[n− 1] min{κ′···′1 , κ′···′2 } ≥ [n− 2] max{κ′···′1 , κ′···′2 }, (31)

[n− 1][min{κ′···′1 , κ′···′2 }]2 ≥ [n− 2]κ′···′1 κ′···′2 = [n− 2][J∗(A)]2, (32)

min{κ′···′1 , κ′···′2 } ≥
[
n−2
n−1

]1/2
J∗(A); (33)

and the result follows.

A.2 Proof of Proposition 6

In this section we prove Proposition 6, stated in Section 4.

Proof of Proposition 6. We demonstrate first that the deep parameters of each specialized

model are revealed by a given collection of type-conditional SCFs.

For the RST model, x �θ y implies ρθ(x, xy)− ρθ(y, xy) = τ θxy(x) > 0, and conversely

ρθ(x, xy)− ρθ(y, xy) > 0 only if x �θ y. Moreover, for x, y, z ∈ A with rθA(y) = rθA(x) + 1

and rθA(z) = |A| we have τ θA(x) = rθA(x)[ρθ(x,A) − ρθ(y, A)] and τ θA(z) = |A| × ρθ(z, A).

Thus �θ and each τ θA are revealed by ρθ.

For the QFC model, x �θ y implies ρθ(x, xy)/ρθ(y, xy) = [δθA]−1 > 1, and conversely

ρθ(x, xy)/ρθ(y, xy) > 1 only if x �θ y. Moreover, for x, y ∈ A with rθA(y) = 2 > 1 = rθA(x)

we have δθA = ρθ(y, A)/ρθ(x,A). Thus �θ and each δθA are revealed by ρθ.

It remains to show that the parameters Ω =
〈
π (θj) , ρ

θj
〉J
j=1

continue to be generically

identified when we restrict Equation 4 to be consistent with either of the two specialized

models. To this end, we partition A as {A1,A2,A3} such that A3 = {A∗} with |A∗| = 2,

A1 = {A ∈ A : |A| = 3}, and A2 = A \ [A1 ∪ A3]. Enumerating C as 〈ci〉Ii=1, we write cvi

for the restriction of ci to partition element Av, and Cv for the set of all such restricted

choice functions. For each v, define the matrix Φv with dimensions I × J and entry 〈i, j〉
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equal to
∏

A∈Av ρ
θj(cvi (A), A). For the RST model this entry appears as

Φv
i,j =

∏
A∈Av

 ∑
x̃∈A: cvi (A)�θj x̃

τ
θj
A (x̃)

r
θj
A (x̃)

 , (34)

and for the QFC model as

Φv
i,j =

∏
A∈Av

[δ
θj
A ]r

θ
A(cvi (A))−1

[
1− δθjA

1− [δ
θj
A ]|A|

]
. (35)

As in Allman et al. [4], we can establish identification of the RST model by proving

that, for each v = 1, 2, the matrix defined in Equation 34 generically has full Kruskal rank.

To show this, note first that the entries of this matrix are polynomial functions of the RST

parameters τ
θj
A (x̃), and each of its minor determinants is thus also a polynomial in these

parameters. Since a polynomial function defined on a Euclidean space is either identically

zero or nonzero almost everywhere (see, e.g., Caron and Traynor [11]), it suffices to show

that Φv has a minor determinant of order n! which is nonzero for a single set of the RST

parameters. This is demonstrated in Lemma 2 below.

The entries in Equation 35 are not polynomial functions of the QFC parameters δ
θj
A .

However, we can multiply each column j of Φv by the scalar
∏

A∈Av [1− [δ
θj
A ]|A|], without

changing its rank, to obtain a modified matrix Φ̂v with polynomial entries

Φ̂v
i,j =

∏
A∈Av

[δ
θj
A ]r

θ
A(cvi (A))−1[1− δθjA ]. (36)

The argument in the previous paragraph then applies to this new matrix, with the required

minor determinant and set of QFC parameters supplied by Lemma 2.

Lemma 2. For each v = 1, 2: (i) The matrix in Equation 34 has a minor determinant of

order n! that is nonzero for some RST parameters τ
θj
A (x̃). (ii) The matrix in Equation 36

has a minor determinant of order n! that is nonzero for some QFC parameters δ
θj
A .

Proof. There are four separate assertions in the lemma, corresponding to the two non-
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trivial partition elements v = 1, 2 times the two specialized models RST and QFC. All

four cases proceed along the same lines, so for brevity we give a proof only for the (least

notationally cumbersome) combination of v = 1 and the RST model.27

Let v = 1. Without loss of generality, we can renumber the J = n! preference types

so that, for each j ≤ J/2, the order �θj and its “partner” �θj+J/2 coincide except for over

the two worst alternatives. Write zj(1) �θj zj(2) �θj · · · �θj zj(n) for the ranking of type

θj, and note that it agrees with its partner θj+J/2 on the optimum from any menu of size

at least three.

Again without loss of generality, we can now renumber the restricted choice functions

in C1 such that the first J rows of the matrix Φ1 correspond to the functions c1
i defined,

for each A ∈ A1, by

c1
i (A) =


max�θi (A) if either i ≤ J/2 or A 6= zi(1)zi(2)zi(3),

zi(2) if both J/2 < i ≤ J and A = zi(1)zi(2)zi(3).

(37)

Observe that if i ≤ J/2 < i′ ≤ J then c1
i and c1

i′ are distinct, since the first is rationalizable

over A1 and the second is not. Moreover, if i < i′ ≤ J/2 then these functions are again

distinct, since they are rationalized by orders that differ on rank positions above the

two worst, and therefore choose differently from at least one menu in A1. Finally, if

J/2 < i < i′ ≤ J then c1
i and c1

i′ are yet again distinct, since they must choose differently

from at least one menu A ∈ A1 other than zi(1)zi(2)zi(3) or zi
′
(1)zi

′
(2)zi

′
(3). After the

above renumberings, we denote by Φ
1

the square matrix consisting of the first J rows and

columns of Φ1.

Next we exhibit a choice of RST parameters such that the determinant of Φ
1

is nonzero,

noting that this is an order J minor determinant of the original matrix Φ1. For each

j ≤ J/2, we select a conditional SCF by requiring ρθj(max�θj (A), A) = 1. Likewise, for

27Details for the other cases are available from the authors upon request.
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J/2 < j ≤ J we require ρθj(max�θj (A), A) = 1 when A 6= zj(1)zj(2)zj(3); as well as

ρθj(zj(1), zj(1)zj(2)zj(3)) = 4/7, (38)

ρθj(zj(2), zj(1)zj(2)zj(3)) = 2/7. (39)

These values can be obtained from the RST model by setting τ
θj
A

(
max�θj (A)

)
= 1 to

yield ρθj(max�θj (A), A) = 1 and τ
θj
zj(1)zj(2)zj(3)

(zj(1)) = τ
θj
zj(1)zj(2)zj(3)

(zj(2)) = 2/7 to

yield Equations 38–39.

Evaluating Φ
1

for the conditional SCFs described in the previous paragraph, our goal

is to show that the determinant of this J×J matrix is nonzero. To establish this, observe

first that for j ≤ J/2 the matrix entry
∏

A∈A1
ρθj(c1

i (A), A) is strictly positive if and only

if i = j. Moreover, for J/2 < j ≤ J the same matrix entry is strictly positive if and only

if either i = j or i = j−J/2. These facts follow from the construction of Φ
1

(in particular

Equation 37) and that of the conditional SCFs used to evaluate it.

Now let φ(j) denote the jth column of the matrix Φ
1
, and suppose

∑J
j=1 ξjφ(j) = 0

for scalars ξ1, . . . , ξJ . The ith component of the latter equation states that

J∑
j=1

ξj
∏
A∈A1

ρθj(c1
i (A), A) = 0. (40)

If J/2 < i ≤ J then we have that ξi
∏

A∈A1
ρθi(c1

i (A), A) = 0, since the product vanishes

in the other terms of the sum. But we also know that
∏

A∈A1
ρθi(c1

i (A), A) > 0, and hence

ξi = 0 in this case. If i ≤ J/2, on the other hand, then by a similar logic we have

ξi
∏
A∈A1

ρθi(c1
i (A), A) + ξi+J/2

∏
A∈A1

ρθi+J/2(c1
i (A), A) = 0. (41)

Once again
∏

A∈A1
ρθi(c1

i (A), A) > 0, and here ξi+J/2 = 0 since i+J/2 > J/2, so it follows

that ξi = 0 in this case as well. We conclude that ξ1 = ξ2 = · · · = ξJ = 0, the columns of

Φ
1

are linearly independent, and this matrix has nonzero determinant.
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A.3 Practical formulation

In this section we sketch how our theoretical framework could be implemented in practice

to estimate structural parameters from mixture choice data.

Enumerating the set C of choice functions as 〈ci〉Ii=1, we can write the mixture choice

function µ in vector form as µ = 〈µ (ci)〉Ii=1. Index a given collection of specialized models

by m = 1, . . . ,M . Denote the SCF of preference/model type 〈�h,m〉 by ρh,m, and write

π = 〈〈π (h,m)〉Hh=1〉Mm=1 for the type distribution. Equation 4 can then be expressed as

µ (ci) =
M∑
m=1

H∑
h=1

π (h,m)
K∏
k=1

ρh,m (ci (Ak) , Ak) . (42)

For each model m, the I ×H matrix

R(m) =


∏K

k=1 ρ
1,m (c1 (Ak) , Ak) · · ·

∏K
k=1 ρ

H,m (c1 (Ak) , Ak)

...
...∏K

k=1 ρ
1,m (cI (Ak) , Ak) · · ·

∏K
k=1 ρ

H,m (cI (Ak) , Ak)

 (43)

describes the transition from the unobserved type distribution in 〈π (h,m)〉Hh=1 to the

observed mixture choice data. Lining up the M transition matrices to form the I ×HM

array R=[R(1) · · ·R(M)], Equation 42 now becomes the vector equality µ = Rπ.

In the above scheme, the functions ρh,m contain the deep parameters to be estimated.

These are collected in a vector β = 〈β`〉L`=1, and we write ρh,mβ for a typical SCF to show

dependence on the parameter assignments.

Next, consider an i.i.d. sample Y = 〈Ys〉Ss=1 of size S, where each Ys ∈ C records the

behavior of agent s over the menu collection 〈Ak〉Kk=1. The probability of observing data

point Ys = ci is computed as µ (Ys) = µ (ci) = µi = Riπ, and the log-likelihood of the

entire sample is then

LL (Y |π,β) =
S∑
s=1

log

[
M∑
m=1

H∑
h=1

π (h,m)
K∏
k=1

ρh,mβ (Ys (Ak) , Ak)

]
. (44)
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Direct maximization of this function by choice of 〈π,β〉 is possible in theory, but may be

computationally challenging. An alternative is to employ the Expectation Maximization

(EM) algorithm, at each step imposing constraints appropriate to the specialized model

at hand (e.g., each τhA(x̃) ∈ [0, 1] for the RST model).28
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