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Abstract. The primary objective of the present paper is to demonstrate the appli-

cability of some recent theories of ordered random choice in describing heterogenous

choice behaviors. Within the ordered framework, we establish a link between ag-

gregate and individual choice. This link allows us to characterize a wide range of

ordered models of behavioral heterogeneity by leveraging on existing characteriza-

tions of individual (deterministic) choice. We also show that our results straight-

forwardly extend to infinite choice spaces enabling applications to choice under risk

and uncertainty (expected utility).

1. Introduction

At the core of many economic models is an individual, or a population of individ-

uals, that make choices from a set of alternatives. Typically, the choices made by

individuals are heterogenous. Introspection, as well as evidence from diverse fields

such as finance (Curcuru, Heaton, Lucas, and Moore, 2010), behavioral economics

(Von Gaudecker, Van Soest, and Wengstrom, 2011), discrete choice (Train, 1998) and

marketing (Draganska and Klapper, 2011) support this. While constructing a choice

model that accommodates heterogeneity is conceptually straightforward, the analysis

of such models is often impeded by their large number of parameters.

There are two interconnected issues in studying models of choice heterogeneity:

identification and characterization. A choice model is identified if its underlying

parameters can be recovered from observed choice data. The second issue, character-

ization, loosely refers to the relation between unobserved individual and observed ag-

gregate choice behaviors. For instance, in a population of utility maximizers, how can

we charactrize aggregate behavior. I.e. what are the observable implications of the

model? Conversely, what properties must aggregate behavior satisfy to be consistent

with utility maximization on part of individuals? Both of these issues, identification
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and characterization, are non-trivial to address for models of choice heterogeneity

due to their many parameters. While recent attention has been directed towards the

identification issue, the characterization issue often remains elusive. This paper aims

to present a simple framework to address the characterization issue across a broad

range of models of choice heterogeneity.

Towards this aim, we draw on a recent literature on stochastic choices from ordered

menus. The model that we consider posits a probability distribution on a set of choice

types/individuals. The principal assumption is that underlying (unobservable) types

can be ordered in such a way that higher types are more aligned with the menu order

than lower types. Besides being technically convenient (i.e. imply identification) the

ordering condition on types is also satisfied in a number of economic settings.1 A

contribution of the present paper is to show that not only are many models identified

within this setting (as shown in prior work) but they are also straightforward to

describe/characterize in terms of (easily interpretable) behavioral properties.

Our first result is a representation result that allows us to establish a link between

individual and aggregate behaviors. Readers familiar with the literature on random

choice, will notice that our representation result is closely related to recent contribu-

tions on ordered random choice models.2 We wish to stress that the model definition

per se should not be viewed as our main contribution. Rather, as we will discuss more

later, our contribution is to formulate the model in a way that makes it applicable

in a range of relevant settings. In particular, our formulation of the model makes

it transparent that the correspondences in the support of the representation explic-

itly depends on the (observed) empirical primitive. This makes it straightforward to

infer properties of (to the researcher unobserved) individual choices using aggregate

choices (the observed stochastic choice rule) and allows us to characterize a range of

different models of choice heterogeneity. Further, our formulation of the model easily

extends to infinite choice domains, that are relevant in many economic environments

such as choice under risk/uncertainty and multi-attribute choice.

The main tool in our analysis is the notion of a cumulative stochastic choice func-

tion (cumulative SCF).3 It associates to each alternative a and menu A the probability

1See e.g. Apesteguia et al. (2017),Filiz-Ozbay and Masatlioglu (2022) and Petri (2023a) for discus-
sions of economically relevant examples.
2See Apesteguia, Ballester, and Lu (2017), Dardanoni, Manzini, Mariotti, Petri, and Tyson (2022),
Filiz-Ozbay and Masatlioglu (2022) and Petri (2023a).
3In a recent, independent, paper Apesteguia and Ballester (2023a) also consider cumulative stochas-
tic choices as the empirical primitive in a characterization of ordered logit.
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of choosing an alternative weakly better than a according to a given order of alterna-

tives. The usefulness of this notion stems from the fact that cumulative SCFs can be

used as an alternative empirical primitive in our framework. Knowing the cumulative

SCF the researcher can easily describe the underlying SCF, and conversely any SCF

gives rise to a cumulative SCF. It turns out that the choice correspondences in the

support of our model can be described as the alternatives with cumulative probability

exceeding a certain threshold. By imposing suitable conditions on the (observed) cu-

mulative stochastic choice function we can thus characterize more specialized models

of behavioral heterogeneity.

We present several applications of the ordered framework. As a first application

we establish links between well-known properties of individual (deterministic) choice

and corresponding aggregate (stochastic) properties. To illustrate, consider Sen’s

property α (Sen, 1971). It is a deterministic property and says that if an alternative

is chosen in a set/menu and other alternatives are eliminated from the menu, then the

alternative should still be chosen in the smaller menu. As an example, if you choose

coffee when coffee, tea and chocolate are available you should choose coffee when

only coffee and tea are available. We formulate a stochastic version of this property,

stochastic property α, and show that a stochastic choice rule satisfies the stochastic

version if and only if all the individual correspondences in the support of our model

satisfy property α. We perform a similar analysis on other well-known properties of

individual choice, such as the classic expansion property (called property γ in Sen

(1971)) and various transitivity properties.

We also apply our results to study ordered versions of the random utility model.

I.e. models where the choices of individual types are dictated by preference rela-

tions. Perhaps noteworthy is that we provide an analysis of incomplete/indecisive

preferences within our framework. To the best of our knowledge very few papers

explore choice heterogeneity in the context of indecisive/incomplete preferences. We

consider a model where individuals use incomplete preferences and are ordered by

their degree of indecision. Higher types are less indecisive than lower types. The

ordering of alternatives in menus is used as a tie-breaking rule to select a unique al-

ternative whenever there is indecision or indifference between alternatives in menus.

The model is characterized by stochastic analogues of the properties characterizing

individual choice correspondences maximized by incomplete preferences.
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In our second application we consider more structured domains (with a topological

structure imposed on the grand set of alternatives). In particular, we characterize

expected utility versions of our model. The model is related to the random expected

utility model of Gul and Pesendorfer (2006) and allows for heterogeneity in expected

utility preferences. The characterization is in terms of straightforward adaptions of

the von Neuman Morgenstern axioms (Von Neumann and Morgenstern, 1947) to our

setting. We also discuss a special case of this model with risk averse preferences. To

the best of our knowledge, characterizing the random expected utility model with

risk averse preferences remains an open problem (in particular Gul and Pesendorfer

(2006) consider finite prize spaces). We characterize a special case with an ordered

type space.

1.1. Related literature. Broadly, this paper relates to a literature that studies

heterogeneity in choice. Modeling issues related to heterogeneity in choice have re-

ceived attention in fields such as macroeconomics, econometrics, finance and decision

theory. Our paper is particularly close to a subset of the decision theoretic litera-

ture that studies variations and extensions of the random utility model (Block and

Marschak, 1960; Barberá and Pattanaik, 1986; Falmagne, 1978). It was early ac-

knowledged that the random utility model suffers from identification issues. Scholars

have therefore focused on variations of RUM with more structure. Notably, Gul and

Pesendorfer (2006) consider an expected utility version of RUM using straightforward

adaptions of the von Neumann Morgenstern axioms.4 Manzini and Mariotti (2018)

consider a RUM with limited support, i.e. where the support of the RUM consists

of two preferences.5 Further, Apesteguia, Ballester, and Lu (2017) consider a ver-

sion of RUM where the collection of preferences in the support of the RUM satisfies

the single-crossing condition. In recent contributions, Filiz-Ozbay and Masatlioglu

(2022) and Dardanoni et al. (2022) introduce and discuss random choice models. Be-

ing extensions of the random utility framework they are subject to the same type of

identification issues as the random utility model.

Starting with the work of Fishburn (1978) a literature has emerged that studies

means to approximate a given stochastic choice function by deterministic correspon-

dences (see e.g. Ok and Tserenjigmid (2022) and Ok and Tserenjigmid (2021)).

Fishburn introduces a class of choice correspondences that are ”derived” from the

4The papers Lu (2016) and Lu (2021) discuss models of ambiguity aversion in the context of RUM.
5See also Manzini, Mariotti, and Petri (2019).
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stochastic choice rule under consideration. Formally, for each SCF ρ a paramet-

ric family of choice correspondence (Cλ)λ∈(0,1] is defined, where Cλ(A) = {a ∈ A :

ρ(a,A) ≥ λmaxb∈A ρ(b, A)} for all A ⊆ X. Similarly to us, Fishburn studies the

relationships between properties satisfied by the approximating Cλ correspondences

and the SCF ρ. Although our approaches are similar, there are some important

conceptual differences. First, every SCF ρ cannot be written in an intuitive manner

as a probability distribution on Cλ correspondences. In contrast, we show that ev-

ery SCF can be described as a (unique) probability distribution on a set of choice

correspondences derived from the SCF. There is thus a clear interpretation of the

deterministic correspondences in our framework as the choice behaviors of individual

types. Interpreting the Cλ correspondences as such is more problematic. Second, we

consider infinite choice settings and applications to the important domains of risk

and uncertainty, whereas Fishburn (and the literature following Fishburn) mainly

considers finite choice environments.

2. Model

We denote by X an arbitrary (finite or infinite) set of alternatives. A nonempty

finite subset A ⊆ X is called a menu. Let A denote a collection of nonempty finite

subsets of X, i.e. A is a collection of menus. We wish to emphasize that we put

no restrictions on the set X at the outset. This makes our framework applicable to

a wide variety of domains, including choice under risk and uncertainty (i.e. choice

from prospects/lotteries), convex subsets of Rm, and discrete domains. Applications

to these domains will be considered in section 5.

The empirical primitive of our exercise is a stochastic choice function. A stochastic

choice function (SCF) is a map ρ : X × A 7→ [0, 1] such that i)
∑

a∈A ρ(a,A) = 1

for all A ∈ A and ii) ρ(a,A) = 0 for all a ∈ X \ A. An analyst thus observes a

probability distribution on choices A for all menus A in the collection A. A choice

correspondence is a function C : A → 2X \ ∅ such that C(A) ⊆ A for all A ∈ A. Let

C denote the set of all choice correspondences.

2.1. Ordered menus. We consider a domain of ordered menus, that is, for each

A ∈ A there is an associated (linear) order ▷A of A. Alternatives in each menu

A ∈ A can thus be ordered as {a1, ... , a|A|} where ai ▷A aj if and only if i > j. It is

important to note that the ordering ▷A is allowed to be menu dependent. This makes

our framework flexible enough to account for a variety of relevant choice domains. We
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refer to the literature on ordered choice for several economically relevant examples

where this condition is satisfied. In section 7 we will apply our results to choice under

risk (and infinite domains). Apesteguia and Ballester (2023a) and Apesteguia and

Ballester (2023b) discuss several relevant examples of ordered domains in this setting.

2.2. Benchmark model. Our model posits a probability distribution µ on choice

correspondences in C. Correspondence C is drawn from C with probability µ(C).

Conditional on correspondence C being drawn the alternative that maximizes ▷A

among alternatives in C(A) is chosen. Given a correspondence C let b[C(A)] be the

▷A best alternative in C(A), i.e. b[C(A)] = max(▷A, C(A)) for all A ∈ A.

Definition 2.1. A stochastic choice function ρ has a random choice model (RCM)

representation if there is a probability measure µ on C such that

ρ(a,A) =

∫
C
1{a = b[C(A)]}dµ(C)

for all a ∈ A and A ⊆ X. ◁

Analyzing choice heterogeneity within this model is unfortunately not very practi-

cal. In general, random choice models suffer from identifiability issues similar to the

well-known identifiability issues of the random utility model. We will therefore focus

on a more structured version of the model with an ordered type space.

2.3. Random ordered model. We will assume that the choice correspondences in

the support of an RCM are totally ordered by set inclusion. It is a permissive condi-

tion that allows for a high degree of heterogeneity in tastes/preferences and cognitive

characteristics such as attention. The next definition formulates the ordering condi-

tion for arbitrary (infinite) collections of choice correspondences. Given two choice

correspondences C,C ′ we write C ⊇ C ′ (C ⊆ C ′) if C(A) ⊇ C ′(A) (C(A) ⊆ C ′(A))

for all A ∈ A.

Definition 2.2. A collection of choice correspondences C is an ordered collection if

for all C,C ′ ∈ C we have that C ⊆ C ′ or C ′ ⊇ C. ◁

The ordering condition limits the degree of heterogeneity tolerated by our model.

At the same time, it is a weak condition that is consistent with many plausible

behaviors. Several examples where this condition is applicable are discussed in Petri

(2023a).
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Definition 2.3. A stochastic choice function ρ has a random ordered model (ROM)

representation if there is a probability measure µ on an ordered collection6 C such

that

ρ(a,A) =

∫
C
1{a = b[C(A)]}dµ(C)

for all a ∈ A and A ⊆ X, and such that supp(ρ) ⊇ C for all C ∈ C.7 ◁

Several interpretations are compatible with the model. The correspondences C can

be interpreted as attention correspondences and the random choice model then mod-

els a single (or population of) individual(s) who has heterogenous attention levels as

encompassed by the measure µ on C but with fixed/homogenous preferences. Alter-

natively, the orders ▷A can be viewed as outside reference orders, such as list orders.

Individuals then choose the first alternative a appearing in the list with a ∈ C(A).

3. Cumulative stochastic choice function

This section introduces the notion of a cumulative stochastic choice function. It

will serve as a powerful tool in characterizing heterogenous choice behaviors in our

subsequent analysis. Formally, given a stochastic choice function ρ, we define a

cumulative stochastic choice function (cumulative SCF) Γρ : X ×A → [0, 1] by

Γρ(a,A) =


∑

b:b⊵Aa

ρ(b, A) if ρ(a,A) > 0,

0 otherwise,

for all a ∈ A and A ∈ A. The restriction of Γρ to alternatives a ∈ A chosen with

positive probability ρ(a,A) > 0 is natural. Defined in this way Γρ orders alternatives

within menus lexicographically. I.e. it may be the case that b ▷A a but Γρ(a,A) >

Γρ(b, A) if b is not chosen in A. In words, the cumulative SCF returns for each chosen

alternative a and menu A the probability of choosing an alternative at least as good

as a. The following lemma shows that there is a natural interpretation of Γρ(a,A) in

the ROM framework as the fraction of types who consider alternative a in menu A

(i.e. for which a ∈ C(A)).

6Formally, we assume that µ is defined on a sigma algebra Σ that is generated by the collection of
all events {C ∈ C : C ⊇ C ′}. This assumption is needed to generalize some of our results to infinite
choice spaces.
7We let supp(ρ) denote the support of ρ defined by supp(ρ)(A) = {a ∈ A : ρ(a,A) > 0} for all
A ∈ A. The requirement that C ⊆ supp(ρ) for all C ∈ C is necessary for identification. Without
this condition the ROM representation of a given SCF ρ would not necessarily be unique (example
available upon request). If ρ is a positive stochastic choice function, then this condition is redundant.
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Lemma 3.1. Let C be the support of a ROM representation of ρ. Then for all A ∈ A
and a ∈ A we have:

Γρ(a,A) =

∫
C
1{a ∈ C(A)}dµ(C).

Lemma 3.1 plays an important role in the subsequent analysis. It provides a

relation between the observed data ρ and the unobserved correspondences in C. It

will be applied frequently in our main analysis in section 5-7.

Proof. Order the alternatives in {a ∈ A : ρ(a,A) > 0} as {a1, ... , an} where a1 ▷A

...▷A an. We have to prove that Γρ(ai, A) =
∫
C 1{ai ∈ C(A)}dµ(C) and that the sets

{ai ∈ C(A)} are measurable for all i. The proof is by induction on i ∈ {1, ... , n}. As
base case let i = 1. Since ρ(a1, A) > 0 there is a C ∈ C with a ∈ C(A). We show

that a1 = max(▷A, C(A)) if and only if a1 ∈ C(A). By definition of a ROM C(A) ⊆
{a1, ... , an} and the conclusion follows from this. Further, by definition of a ROM

{a1 = max(▷A, C(A))} is measurable and hence so is {a1 ∈ C(A)}. Next, note that

Γρ(a1, A) = ρ(a1, A) =
∫
C 1{a1 = max(▷A, C(A))}dµ(C) =

∫
C 1{a1 ∈ C(A)}dµ(C).

Hence the base case is true.

As induction hypothesis, assume that the claim holds for all i ≤ m−1. Let i = m.

Since ρ(am, A) > 0 there is a correspondence C with am ∈ C(A) and am−1 /∈ C(A).

Moreover, for all C ∈ C we have am = max(▷A, C(A)) if and only if am ∈ C(A) and

am−1 /∈ C(A). It thus follows that

ρ(am, A) =

∫
C
1{am = max(▷A, C(A))dµ(C) =

∫
C
1{am ∈ C(A), am−1 /∈ C(A)}dµ(C).

Using the previous equality, we hence have

Γρ(am, A) = Γρ(am−1, A) + ρ(am, A) =

=

∫
C
1{am−1 ∈ C(A)}dµ(C) +

∫
C
1{am ∈ C(A), am−1 /∈ C(A)}dµ(C) =

=

∫
C
1{am ∈ C(A)}dµ(C).

Thus, the formula holds for all a ∈ A and A ∈ A with ρ(a,A) > 0. If ρ(a,A) = 0

then Γρ(a,A) = 0 and since supp(µ) ⊇ C for all C ∈ C we have that a /∈ C(A) for

any C ∈ C so
∫
C 1{a ∈ C(A)}dµ(C) = 0 = Γρ(a,A). □
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4. Representation result

This section presents and briefly discusses the representation result on which our

main analysis in section 5-7 is build. The central new feature of our result is that

we show that the correspondences in the representation can be chosen to explic-

itly depend on the empirical primitive through the cumulative stochastic choices.

More precisely, we show that each correspondence in a ROM representation can be

expressed as a correspondence that for each set of alternatives gives the subset of

alternatives with cumulative probabilities exceeding a fixed threshold.

Theorem 4.1. Let ρ be a stochastic choice function. Then

(1) ρ has a ROM representation with measure µ on an ordered collection C.
(2) Moreover, C can be chosen such that there for every C ∈ C is an α(C) ∈ (0, 1]

with

C(A) = {a ∈ A : Γρ(a,A) ≥ α(C)}.

The thrust of theorem 4.1 is that it provides a (handy) method to analyze unob-

served individual choices using observed aggregate data. Given information provided

by observed data ρ, or equivalently Γρ, the researcher can compute the individual

choice correspondences C ∈ C in a ROM representation of ρ using theorem 4.1.

Conversely, given hypotheses on individual behaviors C ∈ C, the researcher can use

theorem 4.1 to derive testable implications on observed choices.

The proof of theorem 4.1 is delegated to section A.1 in the appendix.8 We next

give a brief proof outline. The idea of proof is to build a parametric family of choice

correspondences (Cα)α∈[0,1] and then show that the Lebesgue measure λ on [0, 1]

induces a representation of the form
∫
1{a = b[Cα(A)]}dλ. A change of variables

then leads to the desired representation. The correspondences Cα are constructed

in an explicit way. As in section 3, we define a cumulative SCF Γρ(a,A) as the

sum of probabilities of alternatives that are weakly better than a in A and then set

Cα(A) = {a ∈ A : Γρ(a,A) ≥ α}. The collection (Cα)α∈[0,1] is clearly ordered and the

measure µ(C) = λ({α ∈ [0, 1] : C = Cα}) then gives a ROM representation of ρ.

8In an independent study Yildiz (2023) considers a similar proof technique.
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5. Application 1: Relation between aggregate and individual

behaviors on finite domains

In this and the following sections we will apply the representation results in sec-

tion 4 to study special cases of ROM with more structure on the individual choice

correspondences in the support of the model. In particular, we will demonstrate

through several examples that the ROM framework provides a natural correspon-

dence between properties satisfied by an aggregate/stochastic choice function ρ and

the individual/deterministic correspondences C in its support.

5.1. Property α. One of the most basic properties of deterministic choice is Sen’s

property α. A choice correspondence C satisfies property α if for all a ∈ B ⊆ A:

if a ∈ C(A) then a ∈ C(B). In words, if a is chosen in a larger set then it should

be chosen in any smaller set containing it. Property α is a characterizing property

of choice correspondences maximized by utility functions. Cleary, if an alternative

a maximizes a utility function u in set A then a maximizes u in any smaller set

containing a as well. We will next formulate a necessary and sufficient condition on

Γρ such that each correspondence in the support of a representing µ satisfies property

α. The following property generalizes property α to our setting.

Stochastic property α. A stochastic choice function satisfies stochastic property α

if a ∈ B ⊆ A implies that Γρ(a,B) ≥ Γρ(a,A).

Proposition 5.1. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies property

α.

(ii) ρ satisfies stochastic property α.

Proof. ((ii) ⇒ (i)) Assume that Γρ satisfies stochastic property α. Let µ on C be

a ROM representation as in theorem 4.1. Let C ∈ C. There is an α ∈ (0, 1] such

that C(A) = {a ∈ A : Γρ(a,A) ≥ α} for all a ∈ A and A ∈ A. Let a ∈ C(A) and

a ∈ B ⊆ A, then stochastic property α implies that Γρ(a,B) ≥ Γρ(a,A) ≥ α and thus

a ∈ C(B). ((i) ⇒ (ii)) Assume that each C ∈ C satisfies property α. Let a ∈ B ⊆ A.

Since each C satisfies property α we have that {C ∈ C : a ∈ C(A)} ⊆ {C ∈ C : a ∈
C(B)}. Thus Γρ(a,B) =

∫
C 1{a ∈ C(B)}dµ(C) ≥

∫
C 1{a ∈ C(A)}dµ(C) = Γρ(a,A),

where the first and last equality follows by lemma 3.1. □
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5.2. Expansion. In this subsection we formulate a stochastic version of the classic

expansion property (called property γ in (Sen, 1971, p.314)). A choice correspondence

C satisfies expansion if for all a ∈ A∩B: if a ∈ C(A)∩C(B) then a ∈ C(A∪B). Thus,

if a is chosen in each of two sets then it must also be chosen in their union. I.e. if you

prefer coffee to chocolate when only chocolate is available and coffee to tea (when

only tea is available), then you should also prefer coffee when both chocolate and tea

are available. We next formulate a stochastic version of expansion and show that

it characterizes ROMs with support consisting of choice correspondences satisfying

expansion.

Stochastic expansion. A stochastic choice function ρ satisfies stochastic expansion

if and only if Γρ(a,A∪B) ≥ min{Γρ(a,A),Γρ(a,B)} for all a ∈ A∩B and A,B ∈ A.

Proposition 5.2. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies expansion.

(ii) ρ satisfies stochastic expansion.

Proof. The implication (ii) ⇒ (i) is immediate and follows from part 2 of theorem

4.1. We show that (i) ⇒ (ii). Assume that each C ∈ C satisfies expansion. We show

that Γρ satisfies stochastic expansion. Let A,B ∈ A and a ∈ A ∩ B. By expansion

of each C it follows that {C ∈ C : a ∈ C(A ∪B)} ⊇ {C ∈ C : a ∈ C(A) ∩C(B)} and

hence Γρ(a,A ∪ B) =
∫
C 1{a ∈ C(A ∪ B)}dµ(C) ≥

∫
C 1{a ∈ C(A) ∩ C(B)}dµ(C),

where the first equality follows by lemma 3.1. It thus suffices to show that
∫
C 1{a ∈

C(A) ∩ C(B)}dµ(C) ≥ min{Γρ(a,A),Γρ(a,B)}. First note that, since C is ordered,

either {C ∈ C : a ∈ C(A)} ⊇ {C ∈ C : a ∈ C(B)} or {C ∈ C : a ∈ C(A)} ⊆ {C ∈ C :

a ∈ C(B)} . Assume that {C ∈ C : a ∈ C(A)} ⊆ {C ∈ C : a ∈ C(B)} (the other case

follows by similar reasoning). Then it follows that {C ∈ C : a ∈ C(A) ∩ C(B)} =

{C ∈ C : a ∈ C(A)}. Hence
∫
C 1{a ∈ C(A)∩C(B)}dµ(C) =

∫
C 1{a ∈ C(A)}dµ(C) =

min{Γρ(a,A),Γρ(a,B)}. □

5.3. Transitivity. A basic tenet of many models of decision making is the classic

transitivity property. Preferences are transitive if for all alternatives such that x is

preferred to y and y preferred to z, it is the case that x is preferred to z. Consequently,

we will call a choice correspondence C transitive if for all x, y, z ∈ X: if x ∈ C(xy) and

y ∈ C(yz) then x ∈ C(xz). A myriad of different stochastic transitivity properties
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are considered in the literature (see e.g. Fishburn (1973)). The most basic version is

weak stochastic transitivity which requires that if x is chosen more frequently than

y, and y more frequently than z, then x should also be chosen more frequently than

z. We here formulate a new stochastic transitivity property expressed in terms of the

cumulative SCF Γρ.

Stochastic transitivity. A stochastic choice function ρ satisfies stochastic transi-

tivity if and only if Γρ(x, z) ≥ min{Γρ(x, y),Γρ(y, z)} for all x, y, z ∈ X.

Proposition 5.3. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies transitiv-

ity.

(ii) ρ satisfies stochastic transitivity.

Proof. The proof is straightforward and follows similar lines of reasoning as the proof

proposition 5.2. A complete proof is available from the author upon request. □

Transitivity of a choice correspondence C is equivalent to the existence of a weak

order ≿ on X such that C(xy) = max(≿, xy). Considering only observations from

binary choice menus the model above is thus closely related to ordered versions of the

binary random utility model. Petri (2023b) studies binary SCRUMs, i.e. the single-

crossing random utility model restricted to the collection of binary choice menus.

The model above is (strictly) more restrictive than binary SCRUM. Indeed, as the

following proposition shows, stochastic transitivity (as defined above) implies that ρ

is a binary SCRUM (whenever the reference order is menu independent). The proof

is straightforward and omitted (available from author upon request).

Corollary 5.4. Let ▷ be a menu independent reference order. If ρ satisfies stochastic

transitivity w.r.t. ▷ then ρ is a binary SCRUM.

5.4. Strict stochastic transitivity. Transitivity is a characterizing property of

choice correspondences maximized by complete preference relations. However, it is

not necessarily a property satisfied by correspondences maximized by incomplete

preferences. If preferences are complete and if x ∈ c(xy) = max(≿, xy) then this

reveals that x is weakly preferred to y. But, if we allow for indecision then x ∈ c(xy)

only reveals that x is not dominated by y. I.e. the decision maker may find x and
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y incomparable. To reveal a preference for x over y it is necessary that x = C(xy).

A property related to, but strictly weaker than, transitivity of a correspondence C is

strict transitivity which requires that for all x, y, z ∈ X: if x = C(xy) and y = C(yz)

then x = C(xz). This property is a characterizing property of choice correspondences

maximized by incomplete preference relations. We will use it when characterizing

multi-utility versions of our model. Our stochastic version of this property reads as

follows.

Strict stochastic transitivity. A stochastic choice function ρ satisfies strict sto-

chastic transitivity if for all x, y, z ∈ X: Γρ(x, y) > Γρ(y, x) and Γρ(y, z) > Γρ(z, y)

implies that

(1) Γρ(x, z) ≥ min{Γρ(x, y),Γρ(y, z)},

(2) Γρ(z, x) ≤ max{Γρ(y, x),Γρ(z, y)}.

The intuition behind strict stochastic transitivity is quite simple. If Γρ(x, y) >

Γρ(y, x) then this reveals that x = C(xy) for sufficiently ”high” correspondences

w.r.t. the ⊆ order. More precisely, 1 − Γρ(x, y) = Γρ(x, y) − Γρ(y, x) =
∫
C 1{x =

C(xy)}dµ(C). Using this revelation relation it is then quite clear that the conclu-

sion of strict stochastic transitivity must hold. The observant reader may also note

that equation (2) in the statement of strict stochastic transitivity is not implied by

equation (1). The reason behind this is that Γρ is a cumulative probability, so un-

like the case for stochastic choice functions ρ we may have Γρ(x, y) + Γρ(y, x) ̸=
Γρ(y, z) + Γρ(z, y).

Proposition 5.5. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies strict tran-

sitivity.

(ii) ρ satisfies strict stochastic transitivity.

Proof. ((ii) ⇒ (i)) Assume that ρ satisfies strict stochastic transitivity. Let µ on C
be a ROM representation as in theorem 4.1. Let C ∈ C. There is then an α ∈ (0, 1]

such that C(A) = {a ∈ A : Γρ(a,A) ≥ α} for all a ∈ A and A ∈ A. We show

that each C satisfies strict transitivity. Let x, y, z ∈ X be such that x = C(xy)
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and y = C(yz). Since x = C(xy) we have Γρ(x, y) ≥ α > Γρ(y, x) and since

y = C(yz) we have Γρ(y, z) ≥ α > Γρ(z, y). Strict stochastic transitivity then implies

that Γρ(x, z) ≥ min{Γρ(x, y),Γρ(y, z)} ≥ α > max{Γρ(y, x),Γρ(z, y)} ≥ Γρ(z, x)

and hence C(xz) = x. ((i) ⇒ (ii)) Conversely, assume that each correspondence C

satisfies strict transitivity. Let x, y, z ∈ X with Γρ(x, y) > Γρ(y, x) and Γρ(y, z) >

Γρ(z, y). Then Γρ(x, y) = 1 and Γρ(y, z) = 1. Lemma 3.1 implies that x ∈ C(xy) and

y ∈ C(yz) for almost all C ∈ C. Strict transitivity of each C implies that z ∈ C(xz)

for almost all C ∈ C. Thus Γρ(x, z) = 1 ≥ min{Γρ(x, y),Γρ(y, z)}. Next, note that

for all x, y ∈ X:
∫
C 1{x = C(xy)}dµ(C) = Γρ(x, y) − Γρ(y, x) = 1 − Γρ(y, x). Since

C is ordered we have that either {C ∈ C : x = C(xy)} ⊆ {C ∈ C : y = C(yz)} or

{C ∈ C : x = C(xy)} ⊇ {C ∈ C : y = C(yz)}. Assume that {C ∈ C : x = C(xy)} ⊆
{C ∈ C : y = C(yz)} (the other case follows by similar reasoning). Then strict

transitivity of each C ∈ C implies that {C ∈ C : x = C(xy)} ⊆ {C ∈ C : x = C(xz)}.
Hence, it follows that min{1 − Γρ(y, x), 1 − Γρ(z, y)} =

∫
C 1{x = C(xy)}dµ(C) ≤∫

C 1{x = C(xz)}dµ(C) = 1− Γρ(z, x). □

6. Application 2: Ordered random multi-utility models

Rationalizable models are models that can be described as resulting from the act

of preference maximization. Various conditions can be imposed on the maximizing

preference relation such as being acyclic, transitive (but incomplete) and complete.

Formally, a choice correspondence is rationalizable if there is an acyclic binary re-

lation ≿ on X such that C(A) = {x ∈ A : y ≻ x for no y ∈ A} for all A ∈ A.

Similarly, a ROM will be called rationalizable if each correspondence in its support is

rationalizable. Sen (1971) shows that a choice correspondence is rationalizable if and

only if it satisfies property α and expansion. The following result is hence a direct

corollary to proposition 5.1 and proposition 5.2.

Proposition 6.1. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation that is rationalizable (by acyclic relations).

(ii) ρ satisfies stochastic property α and stochastic expansion.

Acyclicity is a weak requirement. A common foundational assumption in econom-

ics is that of transitive preferences. We next consider rationalizable ROMs where
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this stronger requirement on preferences is imposed. A large literature studies in-

complete preferences, arguing that completeness is not necessarily a rationality trait

(but transitivity is maintained). An individual may fail to compare several pairs

of alternatives, but still make consistent choices (in the sense of transitivity). A

comprehensive discussion of incomplete preferences is in Eliaz and Ok (2006) and

references therein. An incomplete preference relation is a reflexive and transitive

binary relation ≿ on X. For a collection of utility functions U define the multi-

utility of alternative x ∈ X as U(x) = (u(x))u∈U . A choice rule is maximized

by a multi-utility function if there is a collection U of utility functions such that

C(A) = {x ∈ A : U(y) > U(x) for no y ∈ A} for all menus A ⊆ X.9 Every incom-

plete preference relation ≿ has a multi-utility representation.

A stochastic choice function ρ has an ordered Random Multi-Utility representation

if it has a ROM representation such that each choice rule C is maximized by a

multi-utility function (or equivalently an incomplete preference relation). Our next

characterization result follows by adapting the characterization result in Ribeiro and

Riella (2017) to our setting.

Proposition 6.2. (Ribeiro and Riella (2017)) A choice correspondence C satisfies

property α, expansion and strict transitivity if and only if C is rationalizable by an

incomplete preference relation ≿.

Proposition 6.3. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has an ordered Random Multi-Utility representation.

(ii) ρ satisfies stochastic property α, stochastic expansion and strict stochastic

transitivity.

The strongest notion of rationalizability considered in this paper is through a com-

plete preference relation. In finite choice environments this notion is equivalent to

rationalizability by a utility function, i.e. the existence of a utility function u : X → R
such that C(A) = argmaxa∈A u(a) for all A ⊆ X. A ROM ρ with distribution µ has

an ordered random utility model (oRUM) representation if each correspondence in its

support is rationalized by a utility function.

9Where U(y) > U(x) holds if u(y) > u(x) for some u ∈ U and u(y) ≥ u(x) for all u ∈ U .
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Proposition 6.4. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has an oRUM representation.

(ii) ρ satisfies stochastic property α, stochastic expansion and stochastic transitiv-

ity.

7. Application 3: Relation between aggregate and individual

behaviors on structured domains

In this section we will consider applications to infinite choice spaces endowed with

a topological structure. In particular, we will maintain the assumption that X is a

separable metric space throughout this section. This will facilitate the study of con-

tinuous correspondences and applications to the important domains of choice under

risk and uncertainty.

7.1. Continuous choice. We here consider continuity properties of the correspon-

dences in a ROM representation. A choice correspondence is continuous if for any

convergent sequences (xm) and (ym) in X if xm ∈ C(xmym) for all m ≥ 1 then

x∗ ∈ C(x∗y∗) (where x∗ = limm→∞ xm for convergent sequences (xm)). The following

is a natural generalization of continuity to our setting.

Stochastic continuity. A stochastic choice function ρ satisfies stochastic continuity

if for any convergent sequences (xm) and (ym) in X:

lim sup
m→∞

Γρ(xm, ym) ≤ Γρ(x
∗, y∗).

The following standard lemma will be needed in the proof of our characterization

result below. Let (En)
∞
n=1 be a sequence of subsets of C and define lim supm→∞Em =⋂

m≥1

⋃
k≥m Ek.

Lemma 7.1. For any sequence (En)
∞
n=1 of subsets of C we have that

µ(lim sup
m→∞

Em) ≥ lim sup
m→∞

µ(Em).

Proof. The proof follows by downward continuity of countably additive (probabil-

ity/finite) measures (Aliprantis and Border, 2006, Theorem 10.8, p.376). □

Proposition 7.2. Let ρ be a stochastic choice function. The following statements

are equivalent:
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(i) ρ has a ROM representation where each correspondence C is continuous.

(ii) ρ satisfies stochastic continuity.

Proof. ((ii) ⇒ (i)) Assume that ρ is continuous. Let µ on C be a ROM representation

as in theorem 4.1. Let C ∈ C. There is then an α ∈ (0, 1] such that C(A) =

{a ∈ A : Γρ(a,A) ≥ α} for all a ∈ A and A ∈ A. Let (xm), (ym) be convergent

sequences such that xm ∈ C(xmym) for all m ≥ 1. Then Γρ(xm, ym) ≥ α for all

m ≥ 1. Since ρ is continuous it follows that Γρ(x
∗, y∗) ≥ lim supm→∞ Γρ(xm, ym) ≥ α.

Hence x∗ ∈ C(x∗y∗). ((i) ⇒ (ii)) Conversely, assume that each C is continuous.

Let (xk) and (yk) be convergent sequences in X. Define for each k ≥ 1 the set

Ek = {C ∈ C : xk ∈ C(xk, yk)}. Let E =
⋂

m≥1

⋃
k≥m Ek. We next show that E ⊆

{C ∈ C : x∗ ∈ C(x∗y∗)}. Let C ∈ E. We will construct (convergent) subsequences

(xmk
) and (ymk

) such that xmk
∈ C(xmk

ymk
) for all k ≥ 1. Since C ∈

⋃
k≥1Ek,

there is an m1 such that xm1 ∈ C(xm1ym1). Assume that xm1 , ... , xml
have been

constructed such that m1 < · · · < ml and xmi
∈ C(xmi

ymi
) for all 1 ≤ i ≤ l. Since

C ∈
⋃

k≥ml+1 Ek there is a k ≥ ml + 1 such that C ∈ Ek and hence xk ∈ C(xkyk).

Take ml+1 = k and the construction is complete. Since xmk
∈ C(xmk

ymk
) for all

k ≥ 1 and (xmk
) and (ymk

) converge to x∗ and y∗ respectively, continuity of C

implies that x∗ ∈ C(x∗y∗). Lemma 3.1 now implies that Γρ(x
∗, y∗) =

∫
C 1{x

∗ ∈
C(x∗y∗)}dµ(C) ≥ µ(E) ≥ lim supk→∞ µ(Ek) = lim supk→∞ Γρ(xk, yk), where the

inequality µ(E) ≥ lim supk→∞ µ(Ek) follows by lemma 7.1. □

Definition 7.3. A choice correspondence C on X is maximized by a continuous

utility function if there is a continuous utility function u : X → R such that

C(A) = argmax
a∈A

u(a)

for all A ⊆ X. ◁

Lemma 7.4. A choice correspondence C on X satisfies property α, expansion, tran-

sitivity and continuity if and only if it is maximized by a continuous utility function.

Proof. By previous results we know that there is a complete and transitive relation

≿ that rationalizes C. Since X is a separable metric space (hence second countable),

Debreu’s representation theorem (Debreu, 1954, Theorem II, p. 163) implies that ≿

has a continuous utility representation. □
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We say that a ROM ρ with distribution µ has a continuous ordered random utility

model (continuous oRUM) representation if each correspondence in its support is

maximized by a continuous utility function. The following result is now a direct

corollary to proposition 7.2 and proposition 6.1.

Corollary 7.5. A stochastic choice function ρ has a continuous oRUM representa-

tion if and only if ρ satisfies stochastic property α, stochastic expansion, stochastic

transitivity and stochastic continuity.

7.2. Random expected utility. Let P be a separable metric space of (certain)

prizes and let X be the set of Borel probability measures M(P ) on P endowed with

the topology of weak convergence. Let A be the collection of all finite subsets of X.

For all λ ∈ (0, 1), the λ mixture of two menus A,B is the menu λA + (1 − λ)B =

{λx+(1−λ)y : x ∈ A, y ∈ B}, which is clearly in A whenever A,B ∈ A. If B = {y}
is singleton, the λ mixture of A and {y} is with slight abuse of notation denoted

λA + (1 − λ)y. The next property on (stochastic) choice rules is a choice theoretic

version of the independence axiom (Von Neumann and Morgenstern, 1947). A choice

correspondence C satisfies independence if for all menus A ⊆ X for all λ ∈ (0, 1):

x ∈ C(A) if and only if λx+(1−λ)y ∈ C(λA+(1−λ)y). Independence thus requires

that if x is chosen in A then a λ mixture of x and y should also be chosen whenever

we replace menu A with a menu of λ mixtures of alternatives x ∈ A and y. The

following is a stochastic version of this property, requiring the choice frequency to

remain unchanged by λ mixtures with some fixed lottery y.

Stochastic independence. A stochastic choice function ρ satisfies stochastic inde-

pendence if

Γρ(λx+ (1− λ)y, λA+ (1− λ)y) = Γρ(x,A)

for all x ∈ A ⊆ X and y ∈ X and for all λ ∈ (0, 1).

Proposition 7.6. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies indepen-

dence.

(ii) ρ satisfies stochastic independence.
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The proof of proposition 7.6 is immediate and hence omitted. Given a Bernoulli

(continuous) utility function u : P → R, define the expected utility of prospect x ∈ X

as Eu(x) =
∫
P
u dx. A choice rule C is maximized by an expected utility function

if there is a continuous utility function u : P → R such that C(A) = {x ∈ A :

Eu(x) ≥ Eu(y) for all y ∈ A} for all menus A ⊆ X. A stochastic choice function

ρ has an ordered Random Expected Utility (oREU) representation if it has a ROM

representation with each C in its support maximized by an expected utility function.

Proposition 7.7. A stochastic choice function ρ has an oREU representation if and

only if it satisfies stochastic property α, stochastic expansion, stochastic transitivity,

stochastic continuity and stochastic independence.

Proof. Necessity of the properties is straightforward to check. We next sketch a

proof for sufficiency. By previous analysis it follows that each Cα satisfies property

α, expansion, transitivity, independence and continuity. Define a relation ≿α on

X by x ≿α y if and only if x ∈ Cα(xy). The resulting relation is then complete,

transitive, continuous and satisfies independence. By the von Neumann-Morgenstern

utility theorem in Hara, Ok, and Riella (2019, p.939-940) it follows that ≿α has an

expected utility representation.10 Using property α, expansion and transitivity of Cα

we can then show that ≿α maximizes Cα. This completes the proof. □

Risk aversion. We next characterize a version of the oREU model with risk averse

preferences. For a given prospect x ∈ X let e(x) :=
∫
P
p dx denote its expected value.

Further, for each outcome/prize p ∈ P let δp denote the Dirac measure on P , i.e.

δp(A) = 1 if p ∈ A and δp(A) = 0 otherwise. A choice correspondence C is concave

if for all x ∈ X we have that δe(x) ∈ C(xδe(x)). The motivation behind this property

is that a choice correspondence maximized by expected utility preferences is concave

if and only if it is consistent with risk aversion (i.e. has a concave Bernoulli utility

function).

Stochastic concavity. A stochastic choice function ρ satisfies stochastic concavity

if

Γρ(δe(x), x) ≥ Γρ(x, δe(x))

for all x ∈ X.

10The general version of the von Neumann-Morgenstern theorem (with an infinite prize space) stated
in Hara, Ok, and Riella (2019) first appears in Grandmont (1972).
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Proposition 7.8. Let ρ be a stochastic choice function. The following statements

are equivalent:

(i) ρ has a ROM representation where each correspondence C satisfies concavity.

(ii) ρ satisfies stochastic concavity.

We omit the straightforward proof of proposition 7.8. An immediate corollary to

proposition 7.8 is the following characterization of oREU with risk averse preferences.

Corollary 7.9. A stochastic choice function ρ has an oREU representation where

each type has risk averse preferences if and only if it satisfies stochastic property α,

stochastic expansion, stochastic transitivity, stochastic continuity, stochastic indepen-

dence and stochastic concavity.

Proof. By proposition 7.7 ρ has a ROM representation where each correspondence C

is maximized by an expected utility function uC . Further, for all x, y ∈ X:

(3) x ∈ C(xy) ⇔ EuC(x) ≥ EuC(y).

By stochastic concavity and proposition 7.8 each correspondence in the support of the

ROM satisfies concavity. Hence for all C ∈ C and x ∈ X we have δe(x) ∈ C(xδe(x)). By

equation (3) this implies that for all x ∈ X we have uC(e(x)) = EuC(δe(x)) ≥ EuC(x).

I.e. each uC is concave. The converse is immediate. □

Appendix A. Proofs

A.1. Proof of theorem 4.1. The following standard lemma will be used in the

proof of 4.1. We will use it to ”push forward” the Lebesgue algebra on [0, 1] to a

sigma algebra on C.

Lemma A.1. Let Σ be a sigma algebra on X and f : X → Y a function. Then

f ◦ Σ = {A ⊆ Y : f−1(A) ∈ Σ} is a sigma algebra on Y .

The proof of lemma A.1 is standard and hence omitted. We next give the proof of

theorem 4.1.

Proof. Let λ be the Lebesgue measure on [0, 1] and L the Lebesgue algebra. Let

C0(A) = {a ∈ A : ρ(a,A) > 0} and Cα(A) = {a ∈ A : Γρ(a,A) ≥ α} for all α ∈ (0, 1]

and A ∈ A. Set C = (Cα)α∈[0,1] and define a mapping f : [0, 1] → C by f(α) = Cα

for all α ∈ [0, 1]. Let f ◦ L be the pushforward σ algebra {D ⊆ C : f−1(D) ∈ L}. By
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construction C is ordered. Define a measure µ on f ◦ L by µ(D) = λ(f−1(D)) for all

D ∈ f ◦ L. We claim that ρ has a ROM representation with measure µ. Let a ∈ A

and ρ(a,A) > 0 we shall first prove that

ρ(a,A) = λ({α ∈ [0, 1] : a = b[Cα(A)]}) =
∫

1{a = b[Cα(A)]}dλ.

Lemma A.2. For all α ∈ (0, 1] we have that a = b[Cα(A)] if and only if Γρ(a,A) ≥
α > Γρ(b, A) for all b ∈ A with Γρ(b, A) > 0 and b▷A a.

Proof. The proof is straightforward but we provide one for completeness. If a =

b[Cα(A)] = max(▷A, Cα(A)) then Γρ(a,A) ≥ α. Assume, by contradiction that there

is a b ∈ A with b ▷A a and Γρ(b, A) ≥ α. Then b ∈ Cα(A) and b ▷A a which is a

contradiction to a = max(▷A, Cα(A)). Conversely, if Γρ(a,A) ≥ α > Γρ(b, A) for all

b ∈ A with Γρ(b, A) > 0 and b ▷A a. Then a ∈ Cα(A) but there is no b ∈ A with

b ∈ Cα(A) and b▷A a, i.e. a = max(▷A, Cα(A)) = b[Cα(A)]. □

Let b∗ be the minimum alternative in A w.r.t. ▷A such that Γρ(b, A) > 0 and

b ▷A a. By lemma A.2 it follows that λ({α ∈ [0, 1] : a = b[Cα(A)]}) = λ({α ∈
(0, 1] : a = b[Cα(A)]}) = λ({α ∈ (0, 1] : Γρ(a,A) ≥ α > Γρ(b

∗, A)}) = Γρ(a,A) −
Γρ(b

∗, A) = ρ(a,A). By a change of variables (see theorem 13.46 of Aliprantis and

Border (2006)) it then follows that ρ(a,A) = λ({α ∈ [0, 1] : a = b[Cα(A)]}) =∫
C 1{a = b[C(A)]}dµ(C) for all a ∈ A and A ∈ A. □
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